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The Cartan-Dieudonné theorem is fundamental theorem about the geometry of
n-dimensional space: any orthogonal transformation A can be written as a sequence
of at most n reflections. The proofs that I could find go by induction on n and
hence have to relate maps on n− 1 dimensional spaces to maps on n dimensional
spaces. This leads to technicalities or handwaving. We’ll see a slightly modified
proof that stays in n dimensions by doing induction on dim ker(A− I).

1 the cartan-dieudonné theorem

The theorem we want to prove is:

Theorem 1.1 (Cartan-Dieudonné). An orthogonal transformation A : Rn → Rn can be written as a
sequence of k 6 n reflections in vectors v1, v2, . . . , vk ∈ Rn:

A = Rv1Rv2 · · ·Rvk

where k = n− dim ker(A− I).

The space ker(A − I) = {v ∈ Rn | Av = v} is the subspace where the transformation A is the
identity. So the Cartan-Dieudonné theorem usually decomposes an orthogonal tranformation
into n reflections, but we save one reflection per direction where A is the identity. We shall see
that this is the minimum number: it cannot be done with even fewer reflections.

The idea of the proof is that if we have a vector u such that Au ≠ u, then we can compose A

with the refection R(Au−u), which sends Au back to u, in order to make A also the identity in
that direction. This reflection does not disturb any of the directions where A was already the
identity. We prove the Cartan-Dieudonné theorem by iterating this processes until A is the
identity in all directions. We shall now investigate this in more detail.

2 the geometry of orthogonal tranformations

A linear map A : Rn → Rn is an orthogonal transformation if one of the following equivalent
conditions holds:

1. ATA = I (or equivalently, AT = A−1).
2. 〈Av,Aw〉 = 〈v,w〉 for all v,w.
3. | |Av| | = | |v| | for all v.

Examples of orthogonal transformations are rotations and reflections.

The reflection Rv : Rn → Rn in a vector v is defined as follows:

Definition 2.1. Rv , I− 2vvT

|v|2

On R3 for instance, R(1,0,0)(x,y, z) = (−x,y, z).

A reflection Rv is the identity on a subspace of dimension n− 1 (namely the plane orthogonal to
v), and really does something on a subspace of dimension 1. Similarly, a rotation is the identity
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on a subspace of dimension n − 2 and really does something on a subspace of dimension 2.
Note that the phrase "really does something" must be interpreted with care: a rotation moves
almost all points of R3; only the axis of rotation is left fixed. But still, because these are linear
maps, the action can be decomposed into a plane of rotation, and the identity on the subspace
orthogonal to the plane.

The subspace on which A is the identity is ker(A− I) = {u | Au = u}. The subspace orthogonal
to ker(A− I) on which A really does something can be characterized in two equivalent ways:

Lemma 2.1. If A is an orthogonal transformation, then ker(A− I)⊥ = im(A− I).

Proof. ker(A− I)⊥ = im((A− I)T ) = im(AT − I) = im(A−1 − I) = im(A− I).

This space is important because its dimension determines how many reflections we need when
decomposing A: for directions in which A already is the identity we don’t need any reflections.

The idea behind the proof of the Cartan-Dieudonné theorem is that we can make A be the
identity in more directions by composing it with reflections, and repeat this until it is the
identity in all directions. This is given in the following lemma:

Lemma 2.2. If A is an orthogonal tranformation that is the identity in k directions, then RvA is the
identity in k + 1 directions, where v is any nonzero vector v ∈ im(A − I) \ {0} (i.e., in the subspace
where A really does something).

Proof. Let v ∈ im(A− I) \ {0}, so there is u such that v = Au− u ≠ 0. Then (1) RvA is still the
identity everywhere A is the identity (i.e., on ker(A− I)), and (2) additionally RvA is also the
identity on u ∉ ker(A− I).

To show (1), note that Rv is the identity on all directions orthogonal to v, which by Lemma 2.1
includes everything in ker(A− I).

To show (2), we can do an explicit calculation to show R(Au−u)Au = u, but a picture is more
instructive.

To prove Theorem 1.1, we can repeatedly apply this lemma until A is the identity in all
directions, so that we have Rvk · · ·Rv2Rv1A = I, which gives A = Rv1Rv2 · · ·Rvk .

This is also the minimum number of reflections: if A can be written as k 6 n reflections, then
there are at least n − k directions where A is the identity (e.g. if A can be written as one
reflection, then it is the identity in n− 1 directions). The only directions in which Rv1Rv2 · · ·Rvk

is potentially not the identity is span{v1, v2, · · · , vk}.

3 todos

Lemma 3.1. If | |u| | = | |v| | then R(u−v)u = v, and if w is orthogonal to u, v then R(u−v)w = w.

• Restructure some stuff above; not very happy with the current text.
• Stuff about rotations and isometries.
• Stuff about QR decomposition.
• Pictures.
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