
C O Q C H E AT S H E E T

Jules Jacobs

October 5, 2022

1 introduction

This is Coq code that proves the strong induction principle for natural numbers:

From Coq Require Import Lia.

Lemma strong_induction (P : nat -> Prop) :

(forall n, (forall m, m < n -> P m) -> P n) -> forall n, P n.

Proof.

intros H n. eapply H. induction n.

- lia.

- intros m Hm. eapply H.

intros k Hk. eapply IHn. lia.

Qed.

Coq proofs manipulate the proof state by executing a sequence of tactics such as intros, eapply,
induction. Coq calculates the proof state for you after executing each tactic. Here’s what Coq
displays after executing the second intros m Hm.:

P: nat -> Prop

H: forall n : nat, (forall m : nat, m < n -> P m) -> P n

n: nat

IHn: forall m : nat, m < n -> P m

m: nat

Hm: m < S n

P m

The proof state consists of a list of variables and hypotheses above the line, and a goal below
the line. Executing a tactic may result in zero or more subgoals. A subgoal is solved if we
succesfully apply a tactic that creates no new subgoals (such as the lia tactic, which solves
simple numeric goals). Some tactics create multiple subgoals, such as the induction tactic: it
creates one subgoal for the base case of the induction, and one subgoal for the inductive case.
If a tactic creates multiple subgoals, we solve them using a bulleted list of tactic scripts, or
using brackets:

(* Simple bullets *)

tac1.

+ tac2.

+ tac3.

+ tac4.

+ tac5.

+ tac6.

(* Nested bullets *)

tac1.

+ tac2.

* tac3

* tac4.

+ tac5.

++ tac6.

(* Brackets *)

tac1.

{ tac2. }

{ tac3. }

tac4.

{ tac5. }

tac6.

We usually use bullets if the subgoals are on equal footing, and we use brackets for simple
side-conditions. We do not have to enclose the last subgoal in brackets, thus preventing deep
nesting.

1

2 logical reasoning

2.1 Tactics that modify the goal

Goal Tactic

P → Q intros H

¬P intros H (Coq defines ¬P as P → False)
∀x,P(x) intros x

∃x,P(x) exists x, eexists
P ∧Q split (also works for P ↔ Q, which is defined as (P → Q) ∧ (Q → P))
P ∨Q left, right
Q apply H, eapply H (where H : (...) → Q is a lemma with conclusion Q)

False apply H, eapply H (where H : (...) → ¬P is a lemma with conclusion ¬P)
Any goal exfalso (turns any goal into False)
Skip goal admit (skips goal so that you can work on other subgoals)

When using apply H with a lemma H : P1 → P2 → Q, Coq will create subgoals for each
assumption P1 and P2. If the lemma has no assumptions, then then apply H finishes the goal.

When using apply H with a quantified lemma H : ∀x, (...), Coq will try to automatically find the
right x for you. The apply tactic will fail if Coq cannot determine x. You can then explicitly
choose an instantiation x = 4 using apply (H 4). You can also use eapply H to use an E-var ?x,
which means that the instanation will be determined later. If there are multiple ∀-quantifiers
you can do eapply (H _ _ 4 _), to let Coq determine the ones where you put _.

Similarly, eexists will instantiate an existential quantifier with an E-var. If your goal is ∃n,P n

and you have H : P 3, then you can type eexists. apply H. This automatically determines n = 3.

2.2 Tactics that modify a hypothesis

Hypothesis Tactic

H : False destruct H

H : P ∧Q destruct H as [H1 H2]

H : P ∨Q destruct H as [H1|H2]

H : ∃x,P(x) destruct H as [x H]

H : ∀x,P(x) specialize (H y)

H : P → Q specialize (H G) (where G : P is a lemma or hypothesis)
H : P apply G in H, eapply G in H (where G : P → (...) is a lemma or hypothesis)
H : P, x : A clear H, clear x (remove hypothesis H or variable x)

2.3 Forward reasoning

Tactic Meaning

assert P as H Create new hypothesis H : P after proving subgoal P
assert P as H by tac Create new hypothesis H : P after proving subgoal P using tac

assert (G := H) Duplicate hypothesis
cut P Split goal Q into two subgoals P → Q and P

Brackets are useful with the assert tactic: assert P as H. { ... proof of P ... }

2

3 equality, rewriting , and computation rules

Tactic Meaning

reflexivity Solve goal of the form x = x or P ↔ P

symmetry Turn goal x = y into y = x (or P ↔ Q)
symmetry in H Turn hypothesis H : x = y into H : y = x (or P ↔ Q)

unfold f Replace constant f with its definition (only in the goal)
unfold f in H Replace constant f with its definition (in hypothesis H)
unfold f in * Replace constant f with its definition (everywhere)

simpl Rewrite with computation rules (in the goal)
simpl in H Rewrite with computation rules (in hypothesis H)
simpl in * Rewrite with computation rules (everywhere)

rewrite H. Rewrite H : x = y or H : P ↔ Q (in the goal).
rewrite H in G. Rewrite H (in hypothesis G).
rewrite H in *. Rewrite H (everywhere).

rewrite <-H. Rewrite H : x = y backwards.
rewrite H,G. Rewrite using H and then G.
rewrite !H. Repeatedly rewrite using H.
rewrite ?H. Try rewriting using H.

subst Substitute away all equations H : x = A with a variable on one side.
injection H as H Use injectivity of C to turn H : C x = C y into H : x = y.
discriminate H Solve goal with inconsistent assumption H : C x = D y.
simplify_eq Automated tactic that does subst, injection, and discriminate automatically.

Rewriting also works with quantified equalities. If you have H : ∀nm,n+m = m+n then you
can do rewrite H. Coq will instantiate n and m based on what it finds in the goal. You can
specify a particular instantiation n = 3,m = 5 using rewrite (H 3 5).

The simplify_eq tactic is from stdpp. Although it is not a built-in tactic, I mention it because it
is incredibly useful.

3

https://plv.mpi-sws.org/coqdoc/stdpp/stdpp.tactics.html

4 inductive types and relations

4.1 Inductive types Foo

Term Tactic

x : Foo destruct x as [a b|c d e|f]

x : Foo destruct x as [a b|c d e|f] eqn:E (adds equation E : x = (...) to context)
x : Foo induction x as [a b IH|c d e IH1 IH2|f IH]

4.2 Inductive relations Foo x y

Goal/Hypothesis Tactic

Foo x y constructor, econstructor (tries applying all constructors of Foo)
H : Foo x y inversion H (use when x,y are fixed terms)
H : Foo x y induction H (use when x,y are variables)

It is often useful to define the tactic Ltac inv H := inversion_clear H; subst. and use this
instead of inversion.

4.3 Getting the right induction hypothesis

The revert tactic is useful to obtain the correct induction hypothesis:

Hypothesis Tactic

H : P revert H (opposite of intros H: turn goal Q into P → Q)
x : A revert x (opposite of intros x: turn goal Q into ∀x,Q)

A common pattern is revert x. induction n; intros x; simpl. A good rule of thumb is that
you should create a separate lemma for each inductive argument, so that induction is only ever
used at the start of a lemma (possibly preceded by some revert).

5 proof search with eauto

The eauto tactic tries to solve goals using eapply, reflexivity, eexists, split, left, right. You
can specify the search depth using eauto n (the default is n = 5).

You can give eauto additional lemmas to use with eauto using lemma1,lemma2. You can also use
eauto using foo where foo is an inductive type. This will use all the constructors of foo as
lemmas.

4

6 intro patterns

The destruct x as pat and intros pat tactics can unpack multiple levels at once using nested
intro patterns: if the goal is (P ∧ ∃x : option A,Q1 ∨Q2) → (...) then intros [H [[x|] [G|G]]]

splits the conjunction, unpacks the existential, case analyzes the x : option A, and case analyzes
the disjunction (creating 4 subgoals). The intros tactic can also be chained to introduce multiple
hypotheses: intros x y. ≡ intros x. intros y.

Data Pattern

∃x,P [x H]

P ∧Q [H1 H2]

P ∨Q [H1|H2]

False []

A ∗B [x y]

A+B [x|y]

option A [x|]

bool [|]

nat [|n]

list A [x xs|]

Inductive type [a b|c d e|f]

Inductive type [] (unpack with names chosen by Coq)

x = y -> (substitute the equality x ↦→ y)
x = y <- (substitute the equality y ↦→ x)

Any ? (introduce variable/hypothesis with name chosen by Coq)

Furthermore, (x & y & z & ...) is equivalent to [x [y [z ...]]].

Because ∃x,P, P ∧Q, P ∨Q, False are defined as inductive types, their intro patterns are special
cases of the intro pattern for inductive types, and you can also use the [] intro pattern for
them.

Intro patterns can be used with the assert P as pat tactic, e.g. assert (A = B) as -> or
assert (exists x, P) as [x H]. You can also use them with the apply H in G as pat tactic.

7 composing tactics

Tactic Meaning

tac1; tac2 Do tac2 on all subgoals created by tac1.
tac1; [tac2|..] Do tac2 only on the first subgoal.
tac1; [..|tac2] Do tac2 only on the last subgoal.
tac1; [tac2|..|tac3|tac4] Do tactics on corresponding subgoals.
tac1; [tac2|tac3..|tac4] Do tactics on corresponding subgoals.
tac1 || tac2 Try tac1 and if it fails do tac2.
try tac1 Try tac1, and do nothing if it fails.
repeat tac1 Repeatedly do tac1 until it fails.
progress tac1 Do tac1 and fail if it does nothing.

In the examples above, the two dots are part of the Coq syntax.

5

8 searching for lemmas and definitions

Command Meaning

Search nat. Prints all lemmas and definitions about nat.
Search (0 + _ = _). Prints all lemmas containing the pattern 0 + _ = _.
Search (_ + _ = _) 0. Prints all lemmas containing _ + _ = _ and 0.
Search (list _ -> list _). Prints all definitions and lemmas containing the pattern.
Search Nat.add Nat.mul. Prints all lemmas relating addition and multiplication.
Search "rev". Prints all definitions and lemmas containing substring "rev".
Search "+" "*" "=". Prints all definitions and lemmas containing both +, *, = .

Check (1+1). Prints the type of 1+1
Compute (1+1). Prints the normal form of 1+1.
Print Nat.add. Prints the definition of Nat.add
About Nat.add. Prints information about Nat.add.
Locate "+". Prints information about notation "+".

9 examples of custom tactics

(* Simplifies equations by doing substitution and injection. *)

Tactic Notation "simplify_eq" := repeat match goal with

| _ => congruence || (progress subst)

| H : ?x = ?x |- _ => clear H

| H : _ = _ |- _ => progress injection H as H

| H1 : ?o = Some ?x, H2 : ?o = Some ?y |- _ =>

assert (y = x) by congruence; clear H2

end.

(* Inversion tactic that cleans up the original hypothesis and generated equalities. *)

Ltac inv H := inversion_clear H; simplify_eq.

Ltac simp := repeat match goal with

| H : False |- _ => destruct H

| H : ex _ |- _ => destruct H

| H : _ /\ _ |- _ => destruct H

| H : _ * _ |- _ => destruct H

| H : ?P -> ?Q, H2 : ?P |- _ => specialize (H H2)

| |- forall x,_ => intro

| _ => progress (simpl in *; simplify_eq)

| _ => solve [eauto]

end.

Ltac cases := repeat match goal with

| H : _ \/ _ |- _ => destruct H

| |- _ /\ _ => split

| |- context[if ?x then _ else _] => destruct x eqn:?

| |- context[match ?x with _ => _ end] => destruct x eqn:?

| H : context[if ?x then _ else _] |- _ => destruct x eqn:?

| H : context[match ?x with _ => _ end] |- _ => destruct x eqn:?

end.

http://julesjacobs.com/notes/coq-cheatsheet/tactics.v

6

http://julesjacobs.com/notes/coq-cheatsheet/tactics.v

	Introduction
	Logical reasoning
	Tactics that modify the goal
	Tactics that modify a hypothesis
	Forward reasoning

	Equality, rewriting, and computation rules
	Inductive types and relations
	Inductive types Foo
	Inductive relations Foo x y
	Getting the right induction hypothesis

	Proof search with eauto
	Intro patterns
	Composing tactics
	Searching for lemmas and definitions
	Examples of custom tactics

