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Bounded variable elimination and blocked clause elimination are two effective SAT preprocessing
techniques. This note is about forms of clause elimination that generalize both [ 1.

Given a CNF formula F and a clause c € F and a literal [ € ¢, define elim(F, c, 1) to be the CNF formula
F with clause c replaced by all resolvents of ¢ along .

The formula F consists of clause c, clauses that contain [, clauses that contain —l, and clauses that
contain neither [ nor —l:

F=(VvOANTIVE)A(N\-TVDE) AN
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Now elim(F,c,1) is:

elim(F,c,1) = (A\EvB)A(ATVEI A\ -IVE) AN di)
j i j k

It is clear that F = elim(F,c,[) because we’ve only added resolvents, but the reverse implication
does not hold because we’ve deleted the clause [ V¢. Take F = [, for example; then eliminating the
only clause [ gives us the empty CNE which is satisfied for any variable assignment, whereas F is
only satisfied for [ = 1. However, the two formulas are equisatisfiable.

Lemma 1. F and elim(F, c,1) are equisatisfiable.

Proof. Since F = elim(F,c,1), it suffices to show that any assignment for elim(F, c,1) can be turned
into an assignment for F. If the clause [ V ¢ is satisfied by the assignment for elim(F, c,[), then we can
use the same assignment to satisfy F, because the remaining clauses in F are also in elim(F, c,[). So
suppose [ = 0 and ¢ = 0 in the assignment that satisfies elim(F, c,1). Then elim(F, c,1) simplifies to:

elim(F,c,l) = (\ B A\ @) A (A do)
j i k

Given this assignment for all variables except [, the formula F simplifies to:
F=(vVv?d)

Hence the same assignment but with [ = 1 instead of [ = O satisfies F. O

The proof of this lemma gives us a method to reconstruct solutions for F from solutions for elim(F, c,1):
if the clause we eliminated is already satisfied, do nothing, and otherwise flip the value of [.

We can do bounded clause elimination by heuristically picking clauses to eliminate. We can simulate
both blocked clause elimination and bounded variable elimination using elim:

* Blocked clause elimination deletes a clause c if there is a literal [ € ¢ such that all resolvents of ¢
along [ are tautologies. This is equivalent to replacing c by the resolvents.

* Bounded variable elimination chooses a literal [ are replaces all clauses involving [ by all their
resolvents. This is the same as running clause elimination multiple times, once for each clause that
contains [.



Clause deletion

A slightly different perspective is clause deletion: when is it safe to delete a clause? Deleting a clause
may increase the number of satisfying assignments, but that is fine as long as (a) it doesn’t turn an
UNSAT problem into a SAT problem and (b) we have a method to reconstruct a satisfying assignment
for the original problem from a satisfying assignment for the new problem.

The argument above shows that it is safe to delete a clause ¢ when all its resolvents along [ are implied
by the remaining clauses. The solution reconstruction method is the same: if ¢ is not satisfied, flip [.

We can still simulate bounded variable elimination: first add all resolvents, and now we can delete
the original clauses because all their resolvents are (trivially) implied.

Implementation in a solver

* Keep track of a stack of deleted clauses, and which literal [ was used to delete it.

* We can delete a clause at any time if its resolvents along some [ are implied by permanent clauses.

* Whenever the user adds a new clause containing -, restore all clauses that were deleted using .
(Adding the assumption [ = 0 can be treated as adding the unit clause —l.)

* To reconstruct the original solution, pop all deleted clauses from the stack, flipping [ if necessary
to make the clause satisfied.
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