Bounded clause elimination

Jules Jacobs

May 7, 2021

Bounded variable elimination and blocked clause elimination are two effective SAT preprocessing techniques. This note is about forms of clause elimination that generalize both [KS17].

Given a CNF formula *F* and a clause $c \in F$ and a literal $l \in c$, define elim(F, c, l) to be the CNF formula *F* with clause *c* replaced by all resolvents of *c* along *l*.

The formula F consists of clause *c*, clauses that contain *l*, clauses that contain $\neg l$, and clauses that contain neither *l* nor $\neg l$:

$$F = (l \lor \vec{c}) \land (\bigwedge_i l \lor \vec{a}_i) \land (\bigwedge_j \neg l \lor \vec{b}_j) \land (\bigwedge_k \vec{d}_k)$$

Now elim(F, c, l) is:

$$\mathsf{elim}(F,c,l) = (\bigwedge_{j} \vec{c} \lor \vec{b}_{j}) \land (\bigwedge_{i} l \lor \vec{a}_{i}) \land (\bigwedge_{j} \neg l \lor \vec{b}_{j}) \land (\bigwedge_{k} \vec{d}_{k})$$

It is clear that $F \implies \text{elim}(F, c, l)$ because we've only added resolvents, but the reverse implication does not hold because we've deleted the clause $l \lor \vec{c}$. Take F = l, for example; then eliminating the only clause l gives us the empty CNF, which is satisfied for any variable assignment, whereas F is only satisfied for l = 1. However, the two formulas are equisatisfiable.

Lemma 1. F and elim(F, c, l) are equisatisfiable.

Proof. Since $F \implies \text{elim}(F, c, l)$, it suffices to show that any assignment for elim(F, c, l) can be turned into an assignment for F. If the clause $l \lor \vec{c}$ is satisfied by the assignment for elim(F, c, l), then we can use the same assignment to satisfy F, because the remaining clauses in F are also in elim(F, c, l). So suppose l = 0 and $\vec{c} = 0$ in the assignment that satisfies elim(F, c, l). Then elim(F, c, l) simplifies to:

$$\mathsf{elim}(F,c,l) = (\bigwedge_j \vec{b}_j) \land (\bigwedge_i \vec{a}_i) \land (\bigwedge_k \vec{d}_k)$$

Given this assignment for all variables except l, the formula F simplifies to:

$$F = (l \lor \vec{c})$$

Hence the same assignment but with l = 1 instead of l = 0 satisfies *F*.

The proof of this lemma gives us a method to reconstruct solutions for F from solutions for elim(F, c, l): if the clause we eliminated is already satisfied, do nothing, and otherwise flip the value of l.

We can do *bounded clause elimination* by heuristically picking clauses to eliminate. We can simulate both blocked clause elimination and bounded variable elimination using elim:

- Blocked clause elimination deletes a clause *c* if there is a literal *l* ∈ *c* such that all resolvents of *c* along *l* are tautologies. This is equivalent to *replacing c* by the resolvents.
- Bounded variable elimination chooses a literal *l* are replaces all clauses involving *l* by all their resolvents. This is the same as running clause elimination multiple times, once for each clause that contains *l*.

Clause deletion

A slightly different perspective is clause deletion: when is it safe to delete a clause? Deleting a clause may increase the number of satisfying assignments, but that is fine as long as (a) it doesn't turn an UNSAT problem into a SAT problem and (b) we have a method to reconstruct a satisfying assignment for the original problem from a satisfying assignment for the new problem.

The argument above shows that it is safe to delete a clause c when all its resolvents along l are implied by the remaining clauses. The solution reconstruction method is the same: if c is not satisfied, flip l.

We can still simulate bounded variable elimination: first add all resolvents, and now we can delete the original clauses because all their resolvents are (trivially) implied.

Implementation in a solver

- Keep track of a stack of deleted clauses, and which literal *l* was used to delete it.
- We can delete a clause at any time if its resolvents along some *l* are implied by permanent clauses.
- Whenever the user adds a new clause containing ¬*l*, restore all clauses that were deleted using *l*.
 (Adding the assumption *l* = 0 can be treated as adding the unit clause ¬*l*.)
- To reconstruct the original solution, pop all deleted clauses from the stack, flipping *l* if necessary to make the clause satisfied.

References

[KS17] Benjamin Kiesl and Martin Suda. A unifying principle for clause elimination in first-order logic. In Leonardo de Moura, editor, *Automated Deduction – CADE 26*, pages 274–290, Cham, 2017. Springer International Publishing.