
52

Fast Coalgebraic Bisimilarity Minimization

JULES JACOBS, Radboud University, The Netherlands

THORSTEN WISSMANN, Radboud University, The Netherlands

Coalgebraic bisimilarity minimization generalizes classical automatonminimization to a large class of automata

whose transition structure is specified by a functor, subsuming strong, weighted, and probabilistic bisimilarity.

This offers the enticing possibility of turning bisimilarity minimization into an off-the-shelf technology,

without having to develop a new algorithm for each new type of automaton. Unfortunately, there is no existing

algorithm that is fully general, efficient, and able to handle large systems.

We present a generic algorithm that minimizes coalgebras over an arbitrary functor in the category of sets

as long as the action on morphisms is sufficiently computable. The functor makes at most O(𝑚 log𝑛) calls to
the functor-specific action, where 𝑛 is the number of states and𝑚 is the number of transitions in the coalgebra.

While more specialized algorithms can be asymptotically faster than our algorithm (usually by a factor of

O(𝑚𝑛)), our algorithm is especially well suited to efficient implementation, and our tool Boa often uses much

less time and memory on existing benchmarks, and can handle larger automata, despite being more generic.

CCS Concepts: • Theory of computation;

Additional Key Words and Phrases: Coalgebra, Partition Refinement, Monotone Neighbourhoods

ACM Reference Format:
Jules Jacobs and Thorsten Wißmann. 2023. Fast Coalgebraic Bisimilarity Minimization. Proc. ACM Program.
Lang. 7, POPL, Article 52 (January 2023), 28 pages. https://doi.org/10.1145/3571245

1 INTRODUCTION
State-based systems arise in various shapes throughout computer science: as automata for regular

expressions, as control-flow graphs of programs, Markov decision processes, (labelled) transition

systems, or as the small-step semantics of programming languages. If the programming language

of interest involves concurrency, bisimulation can capture whether two systems exhibit the same

behaviour [Milner 1980; Winskel 1993]. In model checking, a state-based system is derived from

the implementation and then checked against its specification.

It is often beneficial to reduce the size of a state-based system by merging all equivalent states.

Moore’s algorithm [Moore 1956] and Hopcroft’s O(𝑛 log𝑛) algorithm [Hopcroft 1971] do this for

the deterministic finite automata that arise from regular expressions, and produce the equivalent

automaton with minimal number of states. In model checking, state-space reduction can be effective

as a preprocessing step [Baier and Katoen 2008]. For instance, in probabilistic model checking, the

time saved in model checking due to the smaller system exceeds the time needed to minimize the

system [Katoen et al. 2007].

Subsequent to Hopcroft [1971], a variety of algorithms were developed for minimizing different

types of automata. Examples are algorithms for

Authors’ addresses: Jules Jacobs, Radboud University, Nijmegen, The Netherlands; Thorsten Wißmann, Radboud University,

Nijmegen, The Netherlands.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART52

https://doi.org/10.1145/3571245

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

https://doi.org/10.1145/3571245
https://doi.org/10.1145/3571245

52:2 Jules Jacobs and Thorsten Wißmann

• transition systems (without action labels) [Kanellakis and Smolka 1983, 1990], labelled transition

systems [Valmari 2009], which arise from the verification concurrent systems,

• weighted bisimilarity [Valmari and Franceschinis 2010] for Markov chains and probabilistic

settings (such as probabilistic model checking [Katoen et al. 2007]),

• Markov decision processes [Baier et al. 2000; Groote et al. 2018] that combine concurrency with

probabilistic branching,

• weighted tree automata [Björklund et al. 2007, 2009] that arise in natural language process-

ing [May and Knight 2006].

Recently, those algorithms and system equivalences were subsumed by a coalgebraic gener-

alization [Deifel et al. 2019; Dorsch et al. 2017; Wißmann et al. 2021]. This generic algorithm is

parametrized by a (Set-)functor that describes the concrete system type of interest. Functors are

a standard notion in category theory and a key notion in the Haskell programming language. In

coalgebraic automaton minimization, the functor is used to attach transition data to each state of

the automaton. For instance, the powerset functor models non-deterministic branching in transition

systems, and the probability distribution functor models probabilistic branching in Markov chains.

The users of a coalgebraic minimization algorithm may create their own system type by compos-

ing the provided basic functors, allowing them to freely combine deterministic, non-deterministic,

and probabilistic behaviour. For instance, the functor to model Markov decision processes is the

composition of the functors of transition systems and the functor for probability distributions. This

generalization points to the enticing possibility of turning automata minimization for different

types of automata into an off-the-shelf technology.

Unfortunately, there are two problems that currently block this vision. Firstly, although the

generic algorithm has excellent O(𝑚 log𝑛) asymptotic complexity, where 𝑛 is the number of

states and𝑚 is the number of edges, it is slow in practice, and the data structures required for

partition refinement suffer from hungry memory usage. A machine with 16GB of RAM required

several minutes to minimize tree automata with 150 thousand states and ran out of memory when

minimizing tree automata larger than 160 thousand states [Deifel et al. 2019; Wißmann et al. 2021].

This problem has also been observed for algorithms for specific automata types, e.g., transition

systems [Valmari 2010]. In order to increase the total memory available, a distributed partition

refinement algorithm has been developed [Birkmann et al. 2022], (and previously also for specific

automata types, e.g., labelled transition systems [Blom and Orzan 2005]), but this algorithm runs in

O(𝑛2) and requires expensive distributed hardware.

Secondly, the generic algorithm does not work for all Set-functors, because it places certain

restrictions on the functor type necessary for the tight run time complexity. For instance, the

algorithm is not capable of minimizing frames for the monotone neighbourhood logic [Hansen and

Kupke 2004a,b], arising in game theory [Parikh 1985; Pauly 2001; Peleg 1987].

We present a new algorithm that works for all system types given by computable Set-functors,
requiring only an implementation of the functor’s action on morphisms, which is then used

to compute so-called signatures of states, a notion originally introduced for labelled transition

systems [Blom and Orzan 2005]. The algorithm makes at most O(𝑚 log𝑛) calls to the functor

implementation, where 𝑛 and𝑚 are the number of states and edges in the automaton, respectively.

In almost all instances, one such call takes O(𝑘) time, where 𝑘 is the maximum out-degree of a

state, so the overall run time is in O(𝑘𝑚 log𝑛). We compensate for this extra factor because our

algorithm has been designed to be efficient in practice and does not need large data structures: we

only need the automaton with predecessors and a refinable partition data structure.

We provide an implementation of our algorithm in our tool called Boa. The user of the tool can
either encode their system type as a composition of the functors natively supported by Boa, or

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

Fast Coalgebraic Bisimilarity Minimization 52:3

extend Boa with a new functor by providing a small amount of Rust code that implements the

functor’s action on morphisms.

Empirical evaluation of our implementation shows that the memory usage is much reduced,

in certain cases by more than 100x compared to the distributed algorithm [Birkmann et al. 2022],

such that the benchmarks that were used to illustrate its scalability can now be solved on a single

computer. Running time is also much reduced, in certain cases by more than 3000x, even though we

run on a single core rather than a distributed cluster. We believe that this is a major step towards

coalgebraic partition refinement as an off-the-shelf technology for automaton minimization.

The rest of the paper is structured as follows.

Section 2: Coalgebraic bisimilarity minimization and our algorithm in a nutshell.

Section 3: The formal statement of behavioural equivalence of states, and examples for how this

reduces to known notions of equivalence for particular instantiations.

Section 4: Detailed description of our coalgebraic minimization algorithm for any computable set

functor, and time complexity analysis showing that the algorithm makes at most O(𝑚 log𝑛)
calls to the functor operation.

Section 5: Instantiations of the algorithm showing its genericity.

Section 6: Benchmark results showing our algorithm outperforms earlier work.

Section 7: Conclusion and future work.

2 FAST COALGEBRAIC BISIMILARITY MINIMIZATION IN A NUTSHELL
This section presents the key ideas of our fast coalgebraic minimization algorithm. We start with an

introduction to coalgebra, and how the language of category theory provides an elegant unifying

framework for different types of automata. No knowledge of category theory is assumed; we will

go from the concrete to the abstract, and category theoretic notions have been erased from the

presentation as much as possible.

Let us thus start by looking at three examples of automata: deterministic finite automata on the

alphabet {𝑎, 𝑏}, transition systems, and Markov chains. The usual way of visualizing is depicted in

the first row of Figure 1. For instance, a deterministic finite automaton on state set 𝐶 is usually

described via a transition function 𝛿 : 𝐶 × {𝑎, 𝑏} → 𝐶 and a set of accepting states 𝐹 ⊆ 𝐶 (the initial

state is not relevant for the task of computing equivalent states). In order to generalize various

types of automata, however, we take a state-centric point of view, where we consider all the data as
being attached to a particular state:

• In a finite automaton on the alphabet {𝑎, 𝑏} each state has two successors: one for the input letter

𝑎 and one for the input letter 𝑏. Each state also carries a boolean that determines whether the

state is accepting (double border), or not (single border). For instance, state 3 in the deterministic

automaton in the left column of Figure 1 is not accepting, but after transitioning via 𝑎 it goes to

state 5, which is accepting. We can specify any deterministic automaton entirely via a map

𝑐 : 𝐶 → {F, T} ×𝐶 ×𝐶

This map sends every state 𝑞 ∈ 𝐶 to (𝑥, 𝑞𝑎, 𝑞𝑏) := 𝑐 (𝑞), where 𝑥 ∈ {F, T} specifies if 𝑞 is accepting,

and 𝑞𝑎, 𝑞𝑏 ∈ 𝐶 are the target states for in input 𝑎 and 𝑏, respectively.

• A transition system consists of a (finite) set of locations 𝐶 , plus a (finite) set of transitions

“→” ⊆ 𝐶 ×𝐶 . For instance, state 3 in the figure can transition to state 4 or 5 or to itself, whereas

5 cannot transition anywhere. A transition system is specified by a map

𝑐 : 𝐶 → Pf (𝐶)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:4 Jules Jacobs and Thorsten Wißmann

DFA Transition system Markov chain

1

2 3

4 5

a b

a

b

a

b

b

a

a

b

1

2 3

4 5

1

2 3

4 5

1

3

2

3

1

2

1

2

1

2

1

4

1

4

1

2

1

2

1

Functor 𝐹 (𝑋) = {F, T} × 𝑋 × 𝑋 𝐹 (𝑋) = Pf (𝑋) 𝐹 (𝑋) = {F, T} × D(𝑋)

Coalgebra

𝑐 : 𝐶 → 𝐹 (𝐶)

1 ↦→ (F, 2, 3)
2 ↦→ (F, 4, 3)
3 ↦→ (F, 5, 3)
4 ↦→ (T, 5, 4)
5 ↦→ (T, 4, 4)

1 ↦→ {2, 3, 4}
2 ↦→ {1, 4}
3 ↦→ {3, 4, 5}
4 ↦→ {4, 5}
5 ↦→ { }

1 ↦→ (F, {2 :
1

3
, 3 :

2

3
})

2 ↦→ (F, {2 :
1

2
, 4 :

1

2
})

3 ↦→ (F, {2 :
1

4
, 4 :

1

2
, 5 :

1

4
})

4 ↦→ (T, {4 : 1})
5 ↦→ (F, {3 :

1

2
, 4 :

1

2
})

Equivalence 2 ≡ 3, 4 ≡ 5 1 ≡ 2, 3 ≡ 4 2 ≡ 3 ≡ 5

Minimized

𝑐′ : 𝐶′→𝐹 (𝐶′)

1 ↦→ (F, 2, 2)
2 ↦→ (F, 4, 2)
4 ↦→ (T, 4, 4)

1 ↦→ {1, 3}
3 ↦→ {3, 5}
5 ↦→ { }

1 ↦→ (F, {2 : 1})
2 ↦→ (F, {2 :

1

2
, 4 :

1

2
})

4 ↦→ (T, {4 : 1})

Fig. 1. Examples of different system types and their encoding as coalgebras for the state set𝐶 = {1, 2, 3, 4, 5}.

where Pf (𝐶) is the set of finite subsets of 𝐶 . This maps sends every location 𝑞 to the set of

locations 𝑐 (𝑞) ⊆ 𝐶 to which a transition exists.

• A Markov chain consists of a set of states, and for each state a probability distribution over all

states describes the transition behaviour. That is, for each pair of states 𝑞, 𝑞′ ∈ 𝐶 , the probability

𝑝𝑞,𝑞′ ∈ [0, 1] denoting the probability to transition from 𝑞 to 𝑞′. We also attach a boolean label to

each state (again, indicated by double border). For instance, state 1 in the figure steps to state 2
with probability

1

3
and to state 3 with probability

2

3
. Such a Markov chain is specified by a map

𝑐 : 𝐶 → {F, T} × D(𝐶)

where D(𝐶) is the set of finite probability distributions over 𝐶 .

We call the data 𝑐 (𝑞) attached to a state 𝑞 the successor structure of the state 𝑞.
By generalizing the pattern above, different types of automata can be treated in a

uniform way: In all these examples, we have a set of states 𝐶 (where 𝐶 = {1, 2, 3, 4, 5} in the

figure), and then a map 𝑐 : 𝐶 → 𝐹 (𝐶) for the successor structures, for some construction 𝐹 turning

the set of states 𝐶 into another set 𝐹 (𝐶). Such a mapping 𝐹 : Set → Set (in programming terms

one should think of 𝐹 as a type constructor) is called a functor, and describes the automaton type.

This point of view allows us to easily consider variations, such as labelled transition systems, given

by 𝐹 (𝑋) = Pf ({𝑎, 𝑏} × 𝑋), and Markov chains where the states are not labelled but the transitions

are labelled, given by 𝐹 (𝑋) = D({𝑎, 𝑏} × 𝑋). Other examples, such as monoid weighted systems,

Markov Decision processes, and tree automata, are given in Section 3. Representing an automaton

of type 𝐹 by attaching a successor structure of type 𝐹 (𝐶) to each state 𝑞 ∈ 𝐶 brings us to the

following definition:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

Fast Coalgebraic Bisimilarity Minimization 52:5

Definition 2.1. An automaton of type 𝐹 , or finite 𝐹 -coalgebra, is a pair (𝐶, 𝑐) of a finite set of
states 𝐶 , and a function 𝑐 : 𝐶 → 𝐹 (𝐶) that attaches the successor structure of type 𝐹 (𝐶) to each

state in 𝐶 .

Since 𝐶 is a finite set of states, we can give such a map 𝑐 by listing what each state in 𝐶 maps to.

For the concrete automata in Figure 1, the representation using such a mapping 𝑐 : 𝐶 → 𝐹 (𝐶) is
given in the “Coalgebra” row.

2.1 Behavioural equivalence of states in 𝐹 -automata, generically
We now know how to uniformly represent an automaton of type 𝐹 , but we need a uniform way
to state what it means for states to be equivalent. Intuitively, we would like to say that two

states are equivalent if the successor structures attached to the two states by the map 𝑐 : 𝐶 → 𝐹 (𝐶)
are equivalent. The difficulty is that the successor structure may itself contain other states, so

equivalence of states requires equivalence of successor structures and vice versa.

A way to cut this knot is to consider a proposed equivalence of states, and then define what

it means for this equivalence to be valid, namely: an equivalence of states is valid if proposed

to be equivalent states have equivalent successor structures, where equivalence of the successor

structures is considered up to the proposed equivalence of states. In short, the proposed equivalence

should be compatible with the transition structure specified by the successor structures.

Rather than representing a proposed equivalence as an equivalence relation 𝑅 ⊆ 𝐶 ×𝐶 on the

state space 𝐶 , it is better to use a surjective map 𝑟 : 𝐶 → 𝐶′
that assigns to each state a canonical

representative in 𝐶′
identifying its equivalence class (also called block). That is, two states 𝑞, 𝑞′

are equivalent according to 𝑟 , if 𝑟 (𝑞) = 𝑟 (𝑞′). Intuitively, 𝑟 partitions the states into blocks or

equivalence classes {𝑞 ∈ 𝐶 | 𝑟 (𝑞) = 𝑦} ⊆ 𝐶 for each canonical representative 𝑦 ∈ 𝐶′
. Not only does

this representation of the equivalence avoid quadratic overhead in the implementation, but it is

also more suitable to state the stability condition:

An equivalence 𝑟 : 𝐶 → 𝐶′
is stable, if for every two equivalent states 𝑞1, 𝑞2 (i.e., with 𝑟 (𝑞1) =

𝑟 (𝑞2)), the successor structures 𝑐 (𝑞1) and 𝑐 (𝑞2) attached to the states become equal after replacing
states 𝑞 inside the successor structures with their canonical representative 𝑟 (𝑞).
This guarantees that we can build a minimized automaton with the canonical representatives

𝑟 (𝑞) ∈ 𝐶′
as state space. If we do this replacement for both the source and the target of all transitions,

we obtain a potentially smaller automaton 𝑐′ : 𝐶′ → 𝐹 (𝐶′).
In order to gain intuition about this, let us investigate our three examples in Figure 1:

• In the finite automaton, the states 4 ≡ 5 and 2 ≡ 3 can be shown to be equivalent, so we have

𝐶′ = {1, 2, 4} and 𝑟 : 𝐶 → 𝐶′
with 3 ↦→ 2 and 5 ↦→ 4 (and also 1 ↦→ 1, 2 ↦→ 2, 4 ↦→ 4, which we

will use implicitly in future examples). We can check that this equivalence is compatible with 𝑐

by verifying that the successor structures of supposedly equivalent states become equal after
substituting 5 ↦→ 4 and 3 ↦→ 2. After substituting 5 ↦→ 4 we indeed have that 𝑐 (2) = (F, 4, 3) and
𝑐 (3) = (F, 5, 3) become equal, and that 𝑐 (4) = (T, 5, 4) and 𝑐 (5) = (T, 4, 4) become equal. So this

equivalence is stable.

• For the transition system, the states 3 ≡ 4 are equivalent, and 1 ≡ 2 are equivalent. We can

verify, for instance, that states 𝑐 (1) = {2, 3, 4} and 𝑓 (2) = {1, 4} are equivalent, because after
substituting 4 ↦→ 3 and 2 ↦→ 1, we indeed have {1, 3, 3} = {1, 3}, because duplicates can be

removed from sets. Note that it is important that the data for transition systems are sets rather

than lists or multisets. Multisets also give a valid type of automaton, but they do not give the

same notion of equivalence.

• For the Markov chain, we can verify 2 ≡ 3 ≡ 5. Consider that all three of these states step to

state 4 with probability
1

2
. With the remaining probability

1

2
these states step to one of the states

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:6 Jules Jacobs and Thorsten Wißmann

2 ≡ 3 ≡ 5, i.e. they stay in this block. State 3 steps to either state 2 or 5 with probability of
1

4

each. If we however assume that state 5 behaves equivalent to 2, then the branching of state 3 is
the same as going to state 2 with probability

1

4
+ 1

4
= 1

2
directly. Thus, when substituting 5 ↦→ 2

and 3 ↦→ 2 the distribution 𝑐 (3) = (F, {2 :
1

4
, 4 :

1

2
, 5 :

1

4
}), collapses to (F, {2 :

1

2
, 4 :

1

2
}). In other

words, edges to equivalent states get merged by summing up their probability.

Here we assumed that we were given an equivalence, which we check to be stable. Our next task

is to determine how to find the maximal stable equivalence. We shall see that this only requires a

minor modification to checking that a given equivalence is stable: if we discover that an equivalence

is not stable, we can use that information to iteratively refine the equivalence until it is stable.

2.2 Minimizing 𝐹 -automata, generically: the naive algorithm
In this section we describe a naive but generic method for minimizing 𝐹 -automata [König

and Küpper 2014]. The method is based on the observation that we can start by optimistically

assuming that all states are equivalent, and then use the stability check described in the preceding

section to determine how to split up into finer blocks. By iterating this procedure we will arrive at

the minimal automaton.

Let us thus see what happens if we blindly assume all states to be equivalent, and perform the

substitution where we change every state to state 1. For the finite automaton in Figure 1, we get

1 ↦→ (F, 1, 1) 2 ↦→ (F, 1, 1) 3 ↦→ (F, 1, 1) 4 ↦→ (T, 1, 1) 5 ↦→ (T, 1, 1)
Clearly, even though we assumed all states to be equivalent, the states 1, 2, 3 are still distinct from
4, 5 because the former three are not accepting whereas the latter two are. Therefore, even if we

initially assumed all states to be equivalent, we discover inequivalent states. Let us thus try the

equivalence 1 ≡ 2 ≡ 3 and 4 ≡ 5, and apply substitution where we send 2 ↦→ 1, 3 ↦→ 1 and 5 ↦→ 4:

1 ↦→ (F, 1, 1) 2 ↦→ (F, 4, 1) 3 ↦→ (F, 4, 1) 4 ↦→ (T, 4, 4) 5 ↦→ (T, 4, 4)
We have now discovered three distinct blocks of states: state 1, states 2 ≡ 3 and states 4 ≡ 5. If we
apply a substitution for that equivalence, we get:

1 ↦→ (F, 2, 2) 2 ↦→ (F, 4, 2) 3 ↦→ (F, 4, 2) 4 ↦→ (T, 4, 4) 5 ↦→ (T, 4, 4)
We did not discover new blocks; we still have three distinct blocks of states: 1, states 2 ≡ 3 and states
4 ≡ 5. Hence, there is no need to change the substitution map sending each state to a representative

in the ≡-class, and so we reached a fixed point. We can now read off the minimized automaton by

deleting states 3 and 5 from the last automaton above.

The reader may observe that the process sketched above is quite general, and can be used to

minimize a large class of automata. The sketch translates into the pseudocode in Algorithm 1.

Algorithm 1 Sketch of the naive partition refinement algorithm

procedure NaiveAlgorithm(automaton) ⊲ Finds equivalent states of automaton
Put all states in one block (i.e., assume that all states are equivalent)

while number of blocks grows do
Substitute current block numbers in the successor structures

Split up blocks according to the successor structures

The execution trace of this naive algorithm for our three example automata of Figure 1 can be

found in Figure 2. What the algorithm only needs is the ability to obtain a canonicalized successor

structure after applying a substitution to the successor states. In general this may involve some

amount of computation. For instance, for transition systems, a purely textual substitution would

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

Fast Coalgebraic Bisimilarity Minimization 52:7

1 ↦→ (F, 1, 1)
2 ↦→ (F, 1, 1)
3 ↦→ (F, 1, 1)
4 ↦→ (T, 1, 1)
5 ↦→ (T, 1, 1)

1 ↦→ (F, 1, 1)
2 ↦→ (F, 4, 1)
3 ↦→ (F, 4, 1)
4 ↦→ (T, 4, 4)
5 ↦→ (T, 4, 4)

1 ↦→ (F, 2, 2)
2 ↦→ (F, 4, 2)
3 ↦→ (F, 4, 2)
4 ↦→ (T, 4, 4)
5 ↦→ (T, 4, 4)

1 ↦→ {1}
2 ↦→ {1}
3 ↦→ {1}
4 ↦→ {1}
5 ↦→ { }

1 ↦→ {1}
2 ↦→ {1}
3 ↦→ {1, 5}
4 ↦→ {1, 5}
5 ↦→ { }

1 ↦→ {1, 3}
2 ↦→ {1, 3}
3 ↦→ {3, 5}
4 ↦→ {3, 5}
5 ↦→ { }

1 ↦→ (F, {1 : 1})
2 ↦→ (F, {1 : 1})
3 ↦→ (F, {1 : 1})
4 ↦→ (T, {1 : 1})
5 ↦→ (F, {1 : 1})

1 ↦→ (F, {1 : 1})
2 ↦→ (F, {1 :

1

2
, 4 :

1

2
})

3 ↦→ (F, {1 :
1

2
, 4 :

1

2
})

4 ↦→ (T, {4 : 1})
5 ↦→ (F, {1 :

1

2
, 4 :

1

2
})

1 ↦→ (F, {2 : 1})
2 ↦→ (F, {2 :

1

2
, 4 :

1

2
})

3 ↦→ (F, {2 :
1

2
, 4 :

1

2
})

4 ↦→ (T, {4 : 1})
5 ↦→ (F, {2 :

1

2
, 4 :

1

2
})

Fig. 2. Execution of the naive algorithm for the three automata of Figure 1.

lead to {1, 1, 1} assuming all states are conjectured equivalent in the first step, and the canonical

form of this set is {1}. Note that the states 1 − 4 all have successor structure {1} in the first step of

the algorithm, but they get distinguished from state 5, which has successor structure { }.
We see that in order to talk about equivalence of states, and in order to perform minimization,

we need a notion of substitution and canonicalization. As it turns out, this corresponds exactly to

the standard definition of functor in category theory (for Set):

Definition 2.2. 𝐹 : Set → Set is a functor, if given an 𝑝 : 𝐴 → 𝐵 (i.e., a “substitution”), we

have a mapping 𝐹 [𝑝] : 𝐹 (𝐴) → 𝐹 (𝐵). Furthermore, this operation must satisfy 𝐹 [𝑖𝑑] = 𝑖𝑑 and

𝐹 [𝑝 ◦ 𝑔] = 𝐹 [𝑝] ◦ 𝐹 [𝑔].

We thus require all automata types to be given by functors in the sense of Definition 2.2. We can

then talk about equivalence of states, and minimize automata by repeatedly applying this operation

𝐹 [𝑝] as sketched above. A more formal naive algorithm will be discussed in Section 4.2.

2.3 The challenge: a generic and efficient algorithm
The problem with the naive algorithm sketched in Section 2.2 is that it processes all transitions

in every iteration of the main loop. In certain cases, partition refinement (in general) may take

Θ(𝑛) iterations to converge, where 𝑛 is the number of states. This can happen, for instance, if

the automaton has a long chain of transitions, so in each iteration, only one state is moved to a

different block. Figure 3 contains three example automata for which the naive algorithm takes Θ(𝑛)
iterations (provided one generalizes the examples to have 𝑛 nodes).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:8 Jules Jacobs and Thorsten Wißmann

1 2

3

4

56

7

8

a a

a

a

aa

a

a

b

b

b

b

b

b

b

b

1

2

3

4

5

1

2

3

4

5

6

7

8

9

0

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

Fig. 3. Examples of shapes of automata on which the naive algorithm runs in Θ(𝑛2).

Since naive algorithm computes new successor structures for all states in each iteration, the

functor operation is applied O(𝑛2) times in total. Thus, the challenge we set out to solve is the

following:

Can we find an asymptotically and practically efficient algorithm for automaton
minimization that uses only the successor structure recomputation operation 𝐹 [𝑝]?
By using only 𝐹 [𝑝], we do not impose further conditions on the functor 𝐹 beside 𝐹 [𝑝] being

computable Since the algorithm does not inspect 𝐹 any further, the only condition imposed on the

functor is that 𝐹 [𝑝] is computable for all substitutions 𝑝 on the state space.

2.4 Hopcroft’s trick: the key to efficient automaton minimization
A key part of the solution is a principle often called “Hopcroft’s trick” or “half the size” trick, which

underlies all known asymptotically efficient automata minimization algorithms. To understand the

trick, consider the following game:

(1) We start with a set of objects, e.g., {1, 2, 3, 4, 5, 6, 7, 8, 9}.
(2) We chop the set into two parts arbitrarily, e.g., {1, 3, 5, 7, 9}, {2, 4, 6, 8}.
(3) We select one of the sets, and chop it up arbitrarily again, e.g., {1, 3}, {5, 7, 9}, {2, 4, 6, 8}.
(4) We continue the game iteratively (possibly until all sets are singletons).

Once the game is complete, we trace back the history of one particular element, say 3, and count

how many times it was in the smaller part of a split:

The number of times an element was part of the smaller half of a split is O(log𝑛).

One can prove this bound by considering the evolution of the size of the set containing the

element. Initially, this size is 𝑛. Each time the element was part of the smaller part of the split, the

size of the surrounding set gets cut in at least half, which can happen at most O(log𝑛) times before

we reach a singleton.

This indicates that for efficient algorithms, we should make sure that the running time of the

algorithm is only proportional to the smaller halves of the splits. In other words, when we split a

block, we have to make sure that we do not loop over the larger half of the split.

A slightly more general bound results from considering a game where we can split each set into

an arbitrary number of parts, rather than 2:

The number of times an element was part of a smaller part of the split is O(log𝑛).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

Fast Coalgebraic Bisimilarity Minimization 52:9

In this case, “a smaller part of the split” is to be understood as any part of the split except the

largest part. Thus, if we split {1, 2, 3, 4, 5, 6, 7, 8, 9} into {1, 3}, {5, 7, 9}, {2, 4, 6, 8}, then {1, 3}, {5, 7, 9}
are both considered “smaller parts”, whereas {2, 4, 6, 8} is the larger part.

In terms of algorithm design, our goal shall thus be that when we do a 𝑘-way split of a block, we

may do operations proportional to all the 𝑘 − 1 smaller parts of the split, but never an operation

proportional to the largest part of the split.

2.5 A sketch of our generic and efficient algorithm
We design our algorithm based on the naive algorithm and Hopcroft’s trick. The main problem

with the naive algorithm is that it recomputes the successor structures of all states at each step.

The reader may already have noticed that many of the successor structures in fact stay the same,

and are unnecessarily recomputed. The successor structure of a state only changes if the block

number of one of its successors changes. The key to a more efficient algorithm is to minimize the
number of times a block number changes, so that successor structure recomputation is avoided as much
as possible.

In the naive algorithm, we see that when we split a block of states into smaller blocks, we have

freedom about which numbers to assign to each new sub-block. We therefore choose to keep the
old number for the largest sub-block. Hopcroft’s trick will then ensure that a state’s number changes

at most O(log𝑛) times.

In order to reduce recomputation of successor structures, our algorithm tracks for each block of

states (i.e., states with the same block number), which of the states are dirty, meaning that at least

one of their successors’ number changed. The remaining states in the block are clean, meaning that

the successors did not change.

Importantly, all clean states of a block have the same successor structure, because (A) their

successors did not change (B) if their successor structure was different in the last iteration, they

would have been placed in different blocks. Therefore, in order to recompute the successor structures

of a block, it suffices to recompute the dirty states and one of the clean states, because we know

that all the clean states have the same successor structure.

This sketch translates into the pseudocode of Algorithm 2.

Algorithm 2 Sketch of the optimized partition refinement algorithm

procedure PartRefSetFun(automaton) ⊲ Finds equivalent states of automaton
Put all states in one block (i.e., assume that all states are equivalent)

Mark all states dirty

while number of blocks grows do
Pick a block with dirty states

Compute the successor structures of the dirty states and one clean state

Mark all states in the block clean

Split up the block, keeping the old block number for the largest sub-block

Mark all predecessors of changed states dirty

Let us investigate the complexity of this algorithm in terms of the number of successor structure

recomputations. By Hopcroft’s trick, a state’s number can now change at most O(log𝑛) times,

since we do not change the block number of the largest sub-block. Whenever we change a state’s

number, all the predecessors of that state will need to be marked dirty, and be recomputed. If we

take a more global view, we can see that a recomputation may be triggered for every edge in the

automaton, for each time the number of the destination state of the edge changes. Therefore, if

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:10 Jules Jacobs and Thorsten Wißmann

there are𝑚 edges, there will be at most O(𝑚 log𝑛) successor structure recomputations, i.e., at most

O(𝑚 log𝑛) calls to the functor operation.

In order to make the algorithm asymptotically efficient in terms of the total number of primitive

computation steps, we must make sure to never do any operation that is proportional to the number

of clean states in a block. Importantly, we must be able to split a block into 𝑘 sub-blocks without

iterating over the clean states. To do this, we have to devise efficient data structures to keep track

of the blocks and their dirty states (Section 4.3).

We implement our algorithm (Section 4.4) with these data structures and efficient methods for

computing the functor operation in our tool, Boa. When using Boa, the user can either encode their

automata using a composition of the built-in functors, or implement their own functor operation

and instantiate the algorithm with that.

Practical efficiency of the algorithm. Previous work on algorithms that apply to classes of functors

that support more specialized operations in addition to just the functor operation can give better

asymptotic complexity when one considers more fine-grained accounting than just the number of

calls to the functor operation [Deifel et al. 2019; Dorsch et al. 2017; Wißmann et al. 2021; Wißmann

et al. 2020]. Perhaps surprisingly, even though our algorithm is very generic and doesn’t have access

to these specialized operations, our algorithm is much faster than the more specialized algorithm

in practice (Section 6).

However, the limiting factor in practice is not necessarily time but space. The aforementioned

algorithm requires on the order of 16GB of RAM for minimizing automata with 150 thousand states

[Deifel et al. 2019; Wißmann et al. 2021]. In order to be able to access more memory, distributed

algortithms have been developed [Birkmann et al. 2022; Blom and Orzan 2005]. Using a cluster

with 265GB of memory, the distributed algorithm was able to minimize an automaton with 1.3

million states and 260 million edges. By contrast, Boa is able to minimize the same automaton using

only 1.7GB of memory.

The reason is that we do not need any large auxiliary data structures; most of the 1.7GB is

used for storing the automaton itself. Furthermore, because we only need to compute the functor

operation for states in the automaton, we are able to store the automaton in an efficient immutable

binary format.

In the rest of the paper we will first give a more formal definition of bisimilarity in coalgebras

(Section 3), we describe how we represent our automata, and which basic operations we need

(Section 4.1), we describe the auxiliary data structures required by our algorithm (Section 4.3), we

describe our algorithm and provide complexity bounds (Section 4.4), we show a variety of functor

instances that our algorithm can minimize (Section 5), we compare the practical performance to

earlier work (Section 6), and we conclude the paper (Section 7).

3 COALGEBRA AND BISIMILARITY, FORMALLY
In this section we define formally what it means for two states in a coalgebra to be behaviourally

equivalent, and we give examples to show that behavioural equivalence in coalgebras reduces to

known notions of bisimilarity for specific functors.

Recall that we model state-based systems as coalgebras for set functors (Definition 2.2):

Definition 3.1. An 𝐹 -coalgebra consists of a carrier set 𝐶 and a structure map 𝑐 : 𝐶 → 𝐹𝐶 .

Intuitively, the carrier 𝐶 of a coalgebra (𝐶, 𝑐) is the set of states of the system, and for each state

𝑥 ∈ 𝐶 , the map provides 𝑐 (𝑥) ∈ 𝐹𝐶 that is the structured collection of successor states of 𝑥 . If

𝐹 = Pf , then 𝑐 (𝑥) is simply a finite set of successor states. The functor determines a canonical

notion of behavioural equivalence.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

Fast Coalgebraic Bisimilarity Minimization 52:11

Definition 3.2. A homomorphism between coalgebras ℎ : (𝐶, 𝑐) → (𝐷,𝑑) is a map ℎ : 𝐶 → 𝐷 with

𝐹 [ℎ] (𝑐 (𝑥)) = 𝑑 (ℎ(𝑥)) for all 𝑥 ∈ 𝐶 . States 𝑥,𝑦 in a coalgebra (𝐶, 𝑐) are behaviourally equivalent if
there is some other coalgebra (𝐷,𝑑) and a homomorphismℎ : (𝐶, 𝑐) → (𝐷,𝑑) such thatℎ(𝑥) = ℎ(𝑦).

Example 3.3. We consider coalgebras for the following functors (see also Table 1):

(1) Coalgebras for Pf are finitely-branching transition systems and states 𝑥,𝑦 are behaviourally

equivalent iff they are bisimilar.

(2) An (algebraic) signature is a set Σ together with a map ar : Σ → N. The elements of 𝜎 ∈ Σ are

called operation symbols and ar(𝜎) is the arity. Every signature induces a functor defined by

Σ̃𝑋 = {(𝜎, 𝑥1, . . . , 𝑥ar(𝜎)) | 𝜎 ∈ Σ, 𝑥1, . . . , 𝑥ar(𝜎) ∈ 𝑋 }
on sets and for maps 𝑓 : 𝑋 → 𝑌 defined by

Σ̃[𝑓] (𝜎, 𝑥1, . . . , 𝑥ar(𝜎)) = (𝜎, 𝑓 (𝑥1), . . . , 𝑓 (𝑥ar(𝜎))).
A state in a Σ̃-coalgebra describes a possibly infinite Σ-tree, with nodes labelled by 𝜎 ∈ Σ with

ar(𝜎) many children. Two states are behaviourally equivalent iff they describe the same Σ-tree.
(3) Deterministic finite automata on alphabet 𝐴 are coalgebras for the signature Σ with 2 operation

symbols of arity |𝐴|. States are behaviourally equivalent iff they accept the same language.

(4) For a commutative monoid (𝑀, +, 0), the monoid-valued functor 𝑀 (𝑋)
[Gumm and Schröder

2001, Def. 5.1] can be thought of as𝑀-valued distributions over 𝑋 :

𝑀 (𝑋)
:= {𝜇 : 𝑋 → 𝑀 | 𝜇 (𝑥) ≠ 0 for only finitely many 𝑥 ∈ 𝑋 }

The map 𝑓 : 𝑋 → 𝑌 is sent by𝑀 (−)
to

𝑀 (𝑓)
: 𝑀 (𝑋) → 𝑀 (𝑌) 𝑀 (𝑓) (𝜇) =

(
𝑦 ↦→

∑︁
𝑥∈𝑋,𝑓 (𝑥)=𝑦

𝜇 (𝑥)
)

Coalgebras for𝑀 (−)
are weighted systems whose weights come from𝑀 .

A coalgebra 𝑐 : 𝐶 → 𝑀 (𝐶)
, sends a state 𝑥 ∈ 𝐶 and another state 𝑦 ∈ 𝐶 to a weight 𝑚 :=

𝑐 (𝑥) (𝑦) ∈ 𝑀 which is understood as the weight of the transition 𝑥
𝑚−→ 𝑦, where 𝑐 (𝑥) (𝑦) = 0

is understood as no transition. The coalgebraic behavioural equivalence captures weighted

bisimilarity [Klin 2009]. Concretely, a weighted bisimulation is an equivalence relation 𝑅 ⊆ 𝐶×𝐶
such that for all 𝑥 𝑅𝑦 and 𝑧 ∈ 𝐶:∑︁

𝑧 𝑅 𝑧′
𝑐 (𝑥) (𝑧′) =

∑︁
𝑧 𝑅 𝑧′

𝑐 (𝑦) (𝑧′)

(5) Taking 𝑀 = (Q, +, 0), we get that 𝑀 (𝑋)
are linear combinations over 𝑋 . If we restrict to the

subfunctor D(𝑋) = {𝑓 ∈ Q(𝑋)
≥0

| ∑𝑥∈𝑋 𝑓 (𝑥) = 1} where the weights are nonnegative and sum

to 1, we get (rational finite support) probability distributions over 𝑋 .
1

(6) For two functors 𝐹 and 𝐺 , we can consider the coalgebra over their composition 𝐹 ◦𝐺 . Taking

𝐹 = Pf and 𝐺 = 𝐴 × (−), coalgebras over 𝐹 ◦ 𝐺 are labelled transition systems with strong

bisimilarity. Taking 𝐹 = Pf and𝐺 = D, coalgebras over 𝐹 ◦𝐺 areMarkov decision processes with

probabilistic bisimilarity [Larsen and Arne Skou 1991, Def. 6.3], [Bartels et al. 2003, Thm. 4.2].

For 𝐹 = 𝑀 (−)
and𝐺 = Σ for some signature functor, 𝐹𝐺-coalgebras are weighted tree automata

and coalgebraic behavioural equivalence is backward bisimilarity [Björklund et al. 2009; Deifel

et al. 2019].

Sometimes, we need to reason about successors and predecessors of a general 𝐹 -coalgebra:

1
In models of computation where addition of rational numbers isn’t linear time, one can restrict to fixed-precision rationals

𝑄𝑞 = { 𝑝
𝑞

| 𝑝 ∈ Z} for some fixed 𝑞 ∈ N>0 to obtain our time complexity bound.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:12 Jules Jacobs and Thorsten Wißmann

Table 1. List of functors, their coalgebras, and the accompanying notion of behavioural equivalence. The first
five is given in Example 3.3, the last introduced later in Section 5.

Functor 𝐹 (𝑋) Coalgebras 𝑐 : 𝐶 → 𝐹𝐶 Coalgebraic behavioural equivalence

Pf (𝑋) Transition Systems (Strong) Bisimilarity

Pf (𝐴 × 𝑋) Labelled Transition Systems (Strong) Bisimilarity

𝑀 (𝑋)
Weighted Systems (for a monoid𝑀) Weighted Bisimilarity

Pf (D(𝑋)) Markov Decision Processes Probabilistic Bisimilarity

𝑀 (Σ̃𝑋)
Weighted Tree Automata Backwards Bisimilarity

N(𝑋) Monotone Neighbourhood Frames Monotone Bisimilarity

Definition 3.4. Given a coalgebra 𝑐 : 𝐶 → 𝐹𝐶 and a state 𝑥 ∈ 𝐶 , we say that 𝑦 ∈ 𝐶 is a successor
of 𝑥 if 𝑐 (𝑥) is not in the image of 𝐹𝑖𝑦 : 𝐹 (𝐶 \ {𝑦}) → 𝐹𝐶 , where 𝑖𝑦 : 𝐶 \ {𝑦}↣ 𝐶 is the canonical

inclusion. Likewise, 𝑥 is a predecessor of 𝑦, and the outdegree of 𝑥 is the number of successors of 𝑥 .

Intuitively, 𝑦 is a successor of 𝑥 if 𝑦 appears somewhere in the term that defines 𝑐 (𝑥) ∈ 𝐹 (𝐶),
like we did in the “coalgebra” row in Figure 1. We will access the predecessors in the minimization

algorithm, and moreover, the total and maximum number of successors will be used in the run time

complexity analysis.

4 COALGEBRAIC PARTITION REFINEMENT
In this section we will describe how the coalgebraic notions of the preceding section can be used

for automata minimization.

4.1 Representing Abstract Data
When writing an abstract algorithm, it is crucial for the complexity analysis, how the abstract data

is actually represented in memory. We understand finite sets like the carrier of the input coalgebra

as finite cardinals 𝐶 � {0, . . . , |𝐶 | − 1} ⊆ N, and a map 𝑓 : 𝐶 → 𝐷 for finite 𝐶 is represented by an

array of length |𝐶 |.

Coalgebra implementation
The coalgebra 𝑐 : 𝐶 → 𝐹𝐶 that we wish to minimize is given to the algorithm as a black-box,

because it only needs to interact with the coalgebra via a specific interface. Whenever the algorithm

comes up with a partition 𝑝 : 𝐶 → 𝐶′
, two states 𝑥,𝑦 ∈ 𝐶 need to be moved to different blocks if

𝐹 [𝑝] (𝑐 (𝑥)) ≠ 𝐹 [𝑝] (𝑐 (𝑦)). Hence, the algorithm needs to derive 𝐹 [𝑝] (𝑐 (𝑥)) for states of interest
𝑥 ∈ 𝐶 . Since all partitions are finite, we can assume 𝐶′ ⊆ N, and so for simplicity, we consider

partitions as maps 𝑝 : 𝐶 → N with the image ℐ𝓂(𝑝) = {0, . . . , |𝐶′ | − 1} and so 𝐹 [𝑝] (𝑐 (𝑥)) is an
element of the set 𝐹N.
For the case of labelled transition systems, i.e. 𝐹 (𝑋) = Pf (𝐴 × 𝑋), the binary representation

of 𝐹 [𝑝] (𝑐 (𝑥)) is called the signature of 𝑥 ∈ 𝐶 with respect to 𝑝 [Blom and Orzan 2005]. This

straightforwardly generalizes to arbitrary functors 𝐹 [Birkmann et al. 2022; Wißmann et al. 2020],

so we reuse the terminology signature for the binary encoding of the successor structure of 𝑥 ∈ 𝐶

with respect to the blocks the partition 𝑝 of the previous iteration.

Beside the signatures, the optimized minimization algorithm needs to be able to determine the

predecessors of a state, in order to determine which states to mark dirty. Formally, we require:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

Fast Coalgebraic Bisimilarity Minimization 52:13

Definition 4.1. The implementation of an 𝐹 -coalgebra 𝑐 : 𝐶 → 𝐹𝐶 is the data (𝑛, sig, pred) where:
(1) 𝑛 ∈ N is a natural number such that 𝐶 � {0, . . . , 𝑛 − 1}
(2) sig : 𝐶 × (𝐶 → N) → 2

∗
is a function that given a state and a partition, computes the successor

structure of the state (represented a binary data), satisfying for all partitions 𝑝 : 𝐶 → N (encoded

as an array of size |𝐶 |) that
∀𝑥,𝑦 ∈ 𝐶 : sig(𝑥, 𝑝) = sig(𝑦, 𝑝) ⇔ 𝐹 [𝑝] (𝑐 (𝑥)) = 𝐹 [𝑝] (𝑐 (𝑦)) (1)

(3) pred : 𝐶 → Pf𝐶 is a function such that pred(𝑥) contains the predecessors of 𝑥 .
Passing such a general interface makes the algorithm usable as a library, because the coalgebra

can be represented in an arbitrary fashion in memory, as long as the above functions can be

implemented.

The equivalence involving sig (1) specifies that the binary data of type 2
∗
returned by sig is some

normalized representation of 𝐹 [𝑝] (𝑐 (𝑥)) ∈ 𝐹N. For example, in the implementation for 𝐹 = Pf , an

element of 𝐹N = PfN is a set of natural numbers. Since e.g. {2, 0} and {0, 2, 2} ∈ PfN are the same

set, the sig function essentially needs to sort the arising sets and remove duplicates:

Example 4.2. We can represent Pf-coalgebras 𝑐 : 𝐶 → Pf𝐶 by keeping for every state 𝑥 ∈ 𝐶

an array of its successors 𝑐 (𝑥) ⊆ 𝐶 in memory. As a pre-processing step, we directly compute

the predecessors for each state 𝑥 ∈ 𝐶 and keep them as an array pred(𝑥) ⊆ 𝐶 for every state

𝑥 in memory as well (computing the predecessors of all states can be done in linear time, and

thus does not affect the complexity of the algorithm). With 𝑛 := |𝐶 |, the remaining function sig is
implemented as follows:

(1) Given 𝑝 : 𝐶 → N and 𝑥 ∈ 𝐶 , create a new array 𝑡 of integers of size |𝑐 (𝑥) |. For each successor

𝑦 ∈ 𝑐 (𝑥), add 𝑝 (𝑦) ∈ N to 𝑡 ; this runs linearly in the length of 𝑡 because we assume that the

map 𝑝 is represented as an array with O(1) access.
(2) Sort 𝑡 via radix sort and then remove all duplicates, with both steps taking linear time.

(3) Return the binary data blob of the integer array 𝑡 .

For Pf , the computation of the signature of a state 𝑥 ∈ 𝐶 thus takes O(|𝑐 (𝑥) |) time.

We discuss further instances in Section 5 later.

Renumber
By encoding everything as binary data in a normalized way, we are able to make heavy use

of radix sort, and thus achieve linear bounds on sorting tasks. This trick is also used in the

complexity analysis of Kanellakis and Smolka, who refer to it as lexicographic sorting method by

Aho, Hopcroft, and Ullman [Aho et al. 1974]. We use this trick in order to turn arrays of binary

data 𝑝 : 𝐵 → 2
∗
into their corresponding partitions 𝑝′ : 𝐵 → {0, . . . , |ℐ𝓂(𝑝) | − 1} satisfying

𝑝 (𝑥) = 𝑝 (𝑦) ⇐⇒ 𝑝′ (𝑥) = 𝑝′ (𝑦) for all 𝑥,𝑦 ∈ 𝐵. The pseudocode is listed in Algorithm 3: first,

a permutation 𝑟 : 𝐵 → 𝐵 is computed such that 𝑝 ◦ 𝑟 : 𝐵 → 2
∗
is sorted. This radix sort runs in

O(♯(𝑝)), where ♯(𝑝) = ∑
𝑥∈𝐵 |𝑝 (𝑥) | is the total size of the entire array 𝑝 . Since identical entries in

𝑝 are now adjacent, a simple for-loop iterates over 𝑟 and readily assigns block numbers.

Lemma 4.3. Algorithm 3 runs in time O(♯(𝑝)) for the parameter 𝑝 : 𝐵 → 2
∗ and returns a map

𝑝′ : 𝐵 ↠ 𝑏 for some 𝑏 ∈ N such that for all 𝑥,𝑦 ∈ 𝐵 we have 𝑝 (𝑥) = 𝑝 (𝑦) ⇔ 𝑝′ (𝑥) = 𝑝′ (𝑦).
In the actual implementation, we use hash maps to implement Renumber. This is faster in

practice but due to the resolving of hash-collisions, the theoretical worst-case complexity of the

implementation has an additional log factor.

The renumbering can be understood as the compression of a map 𝑝 : 𝐵 → 2
∗
to an integer array

𝑝′ : 𝐵 → N. In the algorithm, the array elements of type 2
∗
are encoded signatures of states.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:14 Jules Jacobs and Thorsten Wißmann

Algorithm 3 Renumbering an array using radix sort

procedure Renumber(𝑝 : 𝐵 → 2
∗
)

Create a new array 𝑟 of size |𝐵 | containing numbers 0..|𝐵 |
Sort 𝑟 by the key 𝑝 : 𝐵 → 2

∗
using radix-sort

Create a new array 𝑝′ : 𝐵 → N
𝑗 := 0

for 𝑖 ∈ 0..|𝐵 | do
if 𝑖 > 0 and 𝑝 [𝑟 [𝑖 − 1]] ≠ 𝑝 [𝑟 [𝑖]] then 𝑗 := 𝑗 + 1

𝑝′ [𝑟 [𝑖]] := 𝑗

return 𝑝′

4.2 The Naive Method Coalgebraically
To illustrate the use of the encoding and notions defined above, let us restate the naive method

(Algorithm 1, [Kanellakis and Smolka 1983; König and Küpper 2014]) in Algorithm 4. Recall that

the basic idea is that it computes a sequence of partitions 𝑝𝑖 : 𝐶 → 𝑃𝑖 (𝑖 ∈ N) for a given input

coalgebra 𝑐 : 𝐶 → 𝐹𝐶 . Initially this partition identifies all states 𝑝0 : 𝐶 → 1. In the first iteration,

the map 𝑝′ : (𝐶 𝑐−→ 𝐹𝐶
𝐹 [𝑝]
−−−→ 𝐹N) sends each state to its output behaviour (this distinguishes final

from non-final states in DFAs and deadlock from live states in transition systems). Then this

partition is refined successively under consideration of the transition structure: 𝑥,𝑦 are identified

by 𝑝𝑖+1 : 𝐶 → 𝑃𝑖+1 iff they are identified by the composed map

𝐶
𝑐−→ 𝐹𝐶

𝐹 [𝑝𝑖]−−−−→ 𝐹𝑃𝑖 .

The algorithm terminates as soon as 𝑝𝑖 = 𝑝𝑖+1, which then identifies precisely the behaviourally

equivalent states in the input coalgebra (𝐶, 𝑐).

Algorithm 4 The naive algorithm, also called final chain partitioning

procedure NaiveAlgorithm’(𝑐 : 𝐶 → 𝐹𝐶)

Create a new array 𝑝 : 𝐶 → N := (𝑥 ↦→ 0) ⊲ i.e. 𝑝 [𝑥] = 0 for all 𝑥 ∈ 𝐶

while |ℐ𝓂(𝑝) | changes do
compute 𝑝′ : 𝐶 → 2

∗
:= 𝑥 ↦→ sig(𝑥, 𝑝) ⊲ 𝑝′ [𝑥] ∈ 2

∗ is the encoding of 𝐹 [𝑝] (𝑐 (𝑥)) ∈ 𝐹N
𝑝 : 𝐶 → N :=Renumber(𝑝′)

Recently, Birkmann et al. [Birkmann et al. 2022] have adapted this algorithm to a distributed

setting, with a run time in O(𝑚 · 𝑛).

4.3 The Refinable Partition Data Structure
For the naive method it sufficed to represent the quotient on the state space 𝑝 : 𝐶 → N by a simple

array. For more efficient algorithms like our Algorithm 2, it is crucial to quickly perform certain

operations on the partition, for which we have built upon a refinable partition data structure [Val-

mari 2009; Valmari and Lehtinen 2008]. The data structure keeps track of the partition of the states

into blocks. A key requirement for our algorithm is the ability to split a block into 𝑘 sub-blocks,

where 𝑘 is arbitrary. The refinable partition also tracks for each state whether it is clean or dirty,
and a worklist of blocks with at least one dirty state.

Let us define the exposed functionality of the refinable partition data structure:

(1) Given (the natural number identifying) a block 𝐵, return its dirty states 𝐵di in O(|𝐵di |).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

Fast Coalgebraic Bisimilarity Minimization 52:15

(2) Given a block 𝐵, return one arbitrary clean state in O(1) if there is any. We denote this by the

set 𝐵cl1 of cardinality at most 1. 𝐵cl1 contains a clean state of 𝐵 or is empty if all states of 𝐵 are

dirty.

(3) Return an arbitrary block with a dirty state and remove it from the worklist, in O(1).
(4) MarkDirty(𝑠): mark state 𝑠 dirty, and put its block on the worklist, in O(1).
(5) Split(𝐵,𝐴): split a block 𝐵 into many sub-blocks according to an array 𝐴 : 𝐵di → N. The array

𝐴 indicates that the 𝑖-th dirty state is placed in the sub-block𝐴[𝑖], meaning that two states 𝑠1, 𝑠2

stay together iff 𝐴[𝑠1] = 𝐴[𝑠2]. The clean states are placed in the 0-th sub-block, with those

states satisfying 𝐴[𝑠] = 0.

The block identifier of 𝐵 gets re-used as the identifier for largest sub-block, and all states of 𝐵

are marked clean. Split returns the list of all newly allocated sub-blocks, i.e. those except the

re-used one.

For the time complexity of our algorithm, it is important that Split(𝐵,𝐴) runs in time O(|𝐵di |),
regardless of the number of clean states.

In order to implement these operations with the desired run time complexity, we maintain the

following data structures:

• loc2state is an array of size |𝐶 | containing all states of 𝐶 . Every block is a section of this array,

and the other stuctures are used to quickly find and update the entries in the loc2state array.
A visualization of an extract of this array is shown in Algorithm 5; for example lowermost row

shows three blocks of size 5, 3, and 1, respectively.

• The array state2loc is inverse to loc2state; state2loc[𝑠] provides the index (“location”) of
state 𝑠 in loc2state.

• blocks is an array of tuples (𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑑, 𝑒𝑛𝑑) and specifies the blocks of the partition. A block

identifier 𝐵 is simply an index in this array and blocks[𝐵] = (𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑑, 𝑒𝑛𝑑) means that block

𝐵 starts at loc2state[𝑠𝑡𝑎𝑟𝑡] and ends before loc2state[𝑒𝑛𝑑], as indicated in the visualization

in Algorithm 5. The range 𝑠𝑡𝑎𝑟𝑡 ..𝑚𝑖𝑑 contains the clean states of 𝐵 and𝑚𝑖𝑑..𝑒𝑛𝑑 the dirty states.

E.g.𝑚𝑖𝑑 = 𝑒𝑛𝑑 iff the block has no dirty states.

• The array block_of of size |𝐶 | that maps every state 𝑠 ∈ 𝐶 to the ID 𝐵 = block_of[𝑠] of its
surrounding block.

• worklist is a list of block identifiers and mentions those blocks with at least one dirty state.

With this data, we can implement the above-mentioned interface:

(1) For a block 𝐵, its dirty states 𝐵di are the states loc2state[𝑚𝑖𝑑..𝑒𝑛𝑑] where blocks[𝐵] =

(𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑑, 𝑒𝑛𝑑).
(2) One arbitrary clean state𝐵cl1 of a given block𝐵 is determined in a similar fashion: for blocks[𝐵] =

(𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑑, 𝑒𝑛𝑑), if 𝑠𝑡𝑎𝑟𝑡 =𝑚𝑖𝑑 , then there is one clean state 𝐵cl1 = {}, and otherwise we chose

𝐵cl1 = {loc2state[𝑠𝑡𝑎𝑟𝑡]}.
(3) Returning an arbitrary block containing a dirty state is just a matter of extracting one element

from worklist.
(4) The pseudocode ofMarkDirty is listed in Algorithm 5: whenmarking a state 𝑠 ∈ 𝐶 dirty, we first

find the boundaries (𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑑, 𝑒𝑛𝑑) = blocks[𝐵] of the surrounding block 𝐵 = block_of[𝑠].
By the index state2loc[𝑠], we can check in O(1) whether 𝑠 is in the first (“clean”) or second

(“dirty”) part of the block. Only if 𝑠 wasn’t dirty already, we need to do something: if 𝐵 did

not contain dirty states yet (𝑠𝑡𝑎𝑟𝑡 =𝑚𝑖𝑑), 𝐵 now needs to be added to the worklist. Then, we
change the location of 𝑠 in the main array such that it becomes the last clean state, and then we

make it dirty by moving the decrementing the index𝑚𝑖𝑑 .

In the example in Algorithm 5, the content of loc2state is visualized. The bold dashed line

visualizes the𝑚𝑖𝑑 position, so states on the left of it are clean, states on the right are dirty. The

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:16 Jules Jacobs and Thorsten Wißmann

Algorithm 5 Refinable partition data structure with 𝑛-way split

procedureMarkDirty(𝑠)

⊲ Determine the block data ⊳

𝐵 := block_of[𝑠]
𝑗 := state2loc[𝑠]
(𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑑, 𝑒𝑛𝑑) := blocks[𝐵]
⊲ Do nothing if already dirty ⊳

if 𝑚𝑖𝑑 ≤ 𝑗 then return
⊲ Add to worklist if first dirty state ⊳

if 𝑚𝑖𝑑 = 𝑒𝑛𝑑 then worklist.𝑎𝑑𝑑 (𝐵)
⊲ Swap 𝑠 with the last clean state ⊳

𝑠′ := loc2state[𝑚𝑖𝑑 − 1]
state2loc[𝑠′] := 𝑗

state2loc[𝑠] :=𝑚𝑖𝑑

loc2state[𝑗] := 𝑠′

loc2state[𝑚𝑖𝑑] := 𝑠

⊲ Move marker to make 𝑠 dirty ⊳

blocks[𝐵] .𝑚𝑖𝑑 −= 1

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9
· · · · · ·

clean dirty states 𝐵di

block 𝐵

start endmid

𝑠1 𝑠2 𝑠4 𝑠3 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9
· · · · · ·

𝑠1 𝑠2 𝑠4 𝑠7 𝑠8 𝑠3 𝑠6 𝑠9 𝑠5
· · · · · ·

MarkDirty(𝑠3)

Split(𝐵,[1, 2, 1, 0, 0, 1])

procedure Split(𝐵, 𝐴 : 𝐵di → N)
⊲ Cumulative counts of sub-block sizes ⊳

(𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑑, 𝑒𝑛𝑑) := blocks[𝐵]
𝐷 [0..max𝑖 𝐴[𝑖] + 1] := 0

𝐷 [0] :=𝑚𝑖𝑑 − 𝑠𝑡𝑎𝑟𝑡

for 𝑗 ∈ 𝐵di do
𝐷 [𝐴[𝑗]] += 1

𝑖𝑚𝑎𝑥 = argmax𝑖 𝐷 [𝑖]
for 𝑖 ∈ 1..|𝐷 | do

𝐷 [𝑖] += 𝐷 [𝑖 − 1]
⊲ Re-order the states by 𝐴-value ⊳

𝑑𝑖𝑟𝑡𝑦 := copy(loc2state[𝑚𝑖𝑑..𝑒𝑛𝑑])
for 𝑖 ∈ reverse(0..|𝐴|) do

𝐷 [𝐴[𝑖]] −= 1

𝑗 := 𝑠𝑡𝑎𝑟𝑡 + 𝐷 [𝐴[𝑖]]
loc2state[𝑗] := 𝑑𝑖𝑟𝑡𝑦 [𝑖]
state2loc[loc2state[𝑖]] := 𝑗

𝐷 [0] −=𝑚𝑖𝑑 − 𝑠𝑡𝑎𝑟𝑡

⊲ Create blocks and assign IDs ⊳

𝐷.𝑎𝑑𝑑 (𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡)
𝑜𝑙𝑑_𝑏𝑙𝑜𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 := |blocks|
for 𝑖 ∈ 0..|𝐷 | − 1 do

𝑗0 := 𝑠𝑡𝑎𝑟𝑡 + 𝐷 [𝑖]
𝑗1 := 𝑠𝑡𝑎𝑟𝑡 + 𝐷 [𝑖 + 1]
if 𝑖 = 𝑖𝑚𝑎𝑥 then

blocks[𝐵] = (𝑗0, 𝑗1, 𝑗1)
else

blocks.𝑎𝑑𝑑 (𝑗0, 𝑗1, 𝑗1)
𝑖𝑑𝑥 := |blocks| − 1

block_of[loc2state[𝑗0 .. 𝑗1]] := 𝑖𝑑𝑥

return 𝑜𝑙𝑑_𝑏𝑙𝑜𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 ..|blocks|

call to MarkDirty(𝑠3) transforms the first row into the second row: it does so by moving 𝑠3

from the clean states of 𝐵 to the dirty ones, while 𝑠4 stays clean.

(5) The pseudocode of Split is listed in Algorithm 5: for a block 𝐵, the caller provides us with

an array 𝐴 : 𝐵di → N that specifies which of the states stay together and which are moved to

separate blocks. In the visualized example, 𝐴 = [1, 2, 1, 0, 0, 1] represents the map

𝑠3 ↦→ 1, 𝑠5 ↦→ 2, 𝑠6 ↦→ 1, 𝑠7 ↦→ 0, 𝑠8 ↦→ 0, 𝑠9 ↦→ 1

So Split(𝐵,𝐴) needs to create new blocks 𝑠3, 𝑠6, 𝑠9 and 𝑠5, while 𝑠7, 𝑠8 stay with the clean states.

In any case, the clean states stay in the same block, so we can understand 𝐴 as an efficient

representation of the map

𝐴 : 𝐵 → N 𝐴(𝑠) =
{
𝐴(𝑠) if 𝑠 ∈ 𝐵di,

0 otherwise.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

Fast Coalgebraic Bisimilarity Minimization 52:17

Then, two states 𝑠, 𝑠′ ∈ 𝐵 stay in the same block iff 𝐴[𝑠] = 𝐴[𝑠′]. In the implementation, we

first create an auxiliary array 𝐷 which has different meanings. Before the definition of 𝑖𝑚𝑎𝑥 , it

counts the sizes of the resulting blocks:

𝐷 [𝑖] = { 𝑗 ∈ 𝐵 | 𝐴[𝑗] = 𝑖}.
We compute 𝐷 by initializing 𝐷 [0] with the number of clean states (𝑚𝑖𝑑 − 𝑠𝑡𝑎𝑟𝑡) and iterating

over 𝐴. The index of the largest block remembered in 𝑖𝑚𝑎𝑥 , and then we change the meaning

of 𝐷 such that it now holds partial sums 𝐷 [𝑖] :=
∑

0≤ 𝑗<𝑖 𝐷 [𝑗]. For every new block 𝑖 , this sum

𝐷 [𝑖] denotes the end of the block, relative to the start of the old block 𝐵.

We use the sums to re-order the states such that states belonging to the same sub block come

next to each other. The for-loop moves every state 𝑖 ∈ 𝐵 to the end of the new block 𝐴[𝑖] and
decrements 𝐷 [𝐴[𝑖]] such that the next state belonging to 𝐴[𝑖] is inserted before that. Finally,

we do not need to move the clean states to sub-block 0, so we simply decrement 𝐷 [0] by
the number of clean states. Since we have inserted all the elements at the end of their future

subblocks and have decremented the entry of 𝐷 during each insertion, the entries of 𝐷 now

point to the first element of each future subblock.

Having the states in the right position within 𝐵, we can now create the subblocks with the right

boundaries. For convenience, we add the (relative) end of 𝐵 to 𝐷 , because then, every sub block

𝑖 ranges from 𝐷 [𝑖] to 𝐷 [𝑖 + 1]. We had saved the index of the largest subblock 𝑖𝑚𝑎𝑥 , which will

inherit the block identifier of 𝐵 and the entry blocks[𝐵]. For all other subblocks, we add a new

block to blocks. All new blocks have no dirty states, so𝑚𝑖𝑑 = 𝑒𝑛𝑑 for the new entries. If we

have added a new block, then we need to update block_of[𝑠] for every state 𝑠 in the subblock.

4.4 Optimized Algorithm
With the refinable partition data structure at hand, we can improve on the naive algorithm without

restricting the choice of 𝐹 . Our efficient algorithm is given in Algorithm 6. We start by creating a

refinable partition data structure with a single block for all the states. We then iterate while there

is still a block with dirty states, i.e. with states whose signatures should be recomputed. We split

the block into sub-blocks in a refinement step that is similar to the naive algorithm, and re-use the

old block for the largest sub-block.

To achieve our complexity bound, this splitting must happen in time |𝐵di |, regardless of the
number of clean states. Fortunately, this is possible because the clean states all have the same

signature, because all their successors remained unchanged. Hence, it suffices to compute the

signature for one arbitrary clean state, denoted by 𝐵cl1 . Depending on the functor, it might happen

that there are dirty states 𝑑 ∈ 𝐵di that have the same signature as the clean states. Having marked

a state as “dirty” just means that the signature might have changed compared to the previous run,

so it might be that the signature of a dirty state turns out to be identical to the clean states in the

block 𝐵.

The wrapper Renumber
′
then first compresses 𝑝 : 𝐵di → 2

∗
to 𝐴 : 𝐵di → N. Then, Renumber′

ensures that those dirty states 𝑑 ∈ 𝐵di with the same signature as the clean states satisfy 𝐴(𝑑) = 0.

This is used in Split: in the splitting operation, two dirty states 𝑑, 𝑑 ′ ∈ 𝐵di stay in the same block

iff 𝐴(𝑑) = 𝐴(𝑑 ′) and the clean states end up in the same block as the dirty states 𝑑 with 𝐴(𝑑) = 0.

After the block 𝐵 is split, we need to mark all states 𝑥 ∈ 𝐵 as dirty whose signature might have

possibly changed due to the updated partition. If the successor 𝑦 of 𝑥 ∈ 𝐵 was moved to a new

block, i.e. if 𝑝 (𝑦) changed, this might affect the signature of 𝑥 . Conversely, if no successor of 𝑥

changed block, then the signature of 𝑥 remains unchanged:

Lemma 4.4. If for a finite coalgebra 𝑐 : 𝐶 → 𝐹𝐶 , two partitions 𝑝1, 𝑝2 : 𝐶 → N satisfy 𝑝1 (𝑦) = 𝑝2 (𝑦)
for all successors 𝑦 of 𝑥 ∈ 𝐶 , then 𝐹 [𝑝1] (𝑐 (𝑥)) = 𝐹 [𝑝2] (𝑐 (𝑥)).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:18 Jules Jacobs and Thorsten Wißmann

Algorithm 6 Optimized Partition Refinement for all Set functors

procedure PartRefSetFun(𝐶 , sig, pred) ⊲ i.e. for the implementation of 𝑐 : 𝐶 → 𝐹𝐶

Create a new refinable partition structure 𝑝 : 𝐶 → N
Init 𝑝 to have one block of all states, and all states marked dirty.

while there is a block 𝐵 with a dirty state do
Compute signatures,

in total O(𝑚 log𝑛) calls
to the coalgebra

Compute the arrays

(𝑠𝑖𝑔𝑠di : 𝐵di → 2
∗) := (𝑥 ↦→ sig(𝑥, 𝑝))

(𝑠𝑖𝑔𝑠cl : 𝐵cl1 → 2
∗) := (𝑥 ↦→ sig(𝑥, 𝑝))

Split 𝐵 according to

signatures in O(|𝐵di |)
𝐴 : 𝐵di → N := Renumber

′ (𝑠𝑖𝑔𝑠di, 𝑠𝑖𝑔𝑠cl)
®𝐵𝑛𝑒𝑤 := Split(𝐵,𝐴)

Mark dirty all states with

a successor in a new block

in total time O(𝑚 log𝑛)

for every 𝐵′ ∈ ®𝐵𝑛𝑒𝑤 and 𝑠 ∈ 𝐵′ do
for every 𝑠′ ∈ pred(𝑠) do

MarkDirty(𝑠′)
return the partition 𝑝

procedure Renumber’(𝑝 : 𝐵di → 2
∗, 𝑞 : 𝐵cl1 → 2

∗
)

(𝐴 : 𝐵di → N) := Renumber(𝑝)
Ensure that 𝐴(𝑑) = 0 for all dirty

states 𝑑 that have the same

signature as the clean states.

if there are 𝑑 ∈ 𝐵di, 𝑐 ∈ 𝐵cl1 with 𝑝 (𝑑) = 𝑞(𝑐) then
Swap the values 0 and 𝐴(𝑑) in the array 𝐴.

return 𝐴

We can now prove correctness of the partition refinement for coalgebras:

Theorem 4.5. For a given coalgebra 𝑐 : 𝐶 → 𝐹𝐶 , Algorithm 6 computes behavioural equivalence.

4.5 Complexity Analysis
We structure the complexity analysis as a series of lemmas phrased in terms of the number of states

𝑛 = |𝐶 | and the total number of transitions𝑚 defined by

𝑚 :=
∑︁
𝑥∈𝐶

|pred(𝑥) |

As a first observation, we exploit that Split re-uses the block index for the largest resulting block.

Thus, whenever 𝑥 is moved to a block with a different index, the new block has at most half the

size of the old block, leading to the logarithmic factor, by Hopcroft’s trick:

Lemma 4.6. A state is moved into a new block at most O(log𝑛) times, that is, for every 𝑥 ∈ 𝐶 , the
value of 𝑝 (𝑥) in Algorithm 6 changes at most ⌈log

2
|𝐶 |⌉ many times.

When a state is moved to a different block, all its predecessors are marked dirty. If there are𝑚

transitions in the system, and each state is moved to different block at most log𝑛 times, then:

Lemma 4.7. MarkDirty is called at most𝑚 · ⌈log𝑛⌉ + 𝑛 many times (including initialization).

In the actual implementation, we arrange the pointers in the initial partition directly such that

all states are marked dirty when the main loop is entered for the first time. The overall run time

is dominated by the complexity of sig and pred. Here, we assume that sig always takes at least

the time needed to write its return value. On the other hand, we allow that pred returns a pre-

computed array by reference, taking only O(1) time. The pre-computation of pred can be done at

the beginning of the algorithm by iterating over the entire coalgebra once, e.g. it can be done along

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

Fast Coalgebraic Bisimilarity Minimization 52:19

with input parsing. This runs linear in the overall size of the coalgebra, and thus is dominated by

the complexity of the algorithm:

Proposition 4.8. The run time complexity of Algorithm 6 amounts to the time spent in sig and in
pred plus O(𝑚 · log𝑛 + 𝑛).

Thus, it remains to count how often the algorithm calls sig. Roughly, sig is called for every state

that becomes dirty, so we can show:

Theorem 4.9. The number of invocations of sig in Algorithm 6 is bounded by O(𝑚 · log𝑛 + 𝑛).
Corollary 4.10. If sig takes 𝑓 time, if pred runs in O(1) (returning a reference) and𝑚 ≥ 𝑛, then

Algorithm 6 computes behavioural equivalence in the input coalgebra in O(𝑓 ·𝑚 · log𝑛) time.

Example 4.11. For Pf-coalgebras, sig takes O(𝑘) time, if every state has at most 𝑘 successors.

Then Algorithm 6 minimizes Pf-coalgebras in time O(𝑘 ·𝑚 · log𝑛). Note that𝑚 ≤ 𝑘 · 𝑛, so the

complexity is also bounded by O(𝑘2 · 𝑛 log𝑛).

4.6 Comparison to related work on the algorithmic level
We can classify partition refinement algorithms by their time complexity, and by the classes of

functors they are applicable to. For concrete system types, there are more algorithms than we can

recall, so instead, we focus on early representatives and on generic algorithms.

The Hopcroft line of work. One line of work originates in Hopcroft’s 1971 work on DFA minimiza-

tion [Hopcroft 1971], and continues with Kanellakis and Smolka’s [Kanellakis and Smolka 1983,

1990] work on partition refinement for transition systems running in O(𝑘2𝑛 log𝑛) where 𝑘 is the

maximum out-degree. It was a major achievement by Paige and Tarjan [Paige and Tarjan 1987] to

reduce the run time to O(𝑘𝑛 log𝑛) by counting transitions and storing these transition counters in a
clever way, which subsequently lead to a fruitful line of research on transition system minimization

[Garavel and Lang 2022]. This was generalized to coalgebras in Deifel, Dorsch, Milius, Schröder

and Wißmann’s work on CoPaR, which is applicable to a large class of functors satisfying their

zippability condition. These algorithms keep track of a worklist of blocks with respect to which

other blocks still have to be split. Our algorithm, by contrast, keeps track of a worklist of blocks that

themselves still potentially have to be split. Although similar at first sight, they are fundamentally

different: in the former, one is given a block, and must determine how to split all the predecessor

blocks, whereas in our case one is given a block, which is then split based on its successors.

The advantage of the former class of algorithms is that they have optimal time complexity

O(𝑘𝑛 log𝑛), provided one can implement the special splitting procedure for the functor. The

additional memory needed for the transition counters is linear in 𝑘𝑛.

Our algorithm, by contrast, has an extra factor of 𝑘 , but is applicable to all computable set-

functors. By investing this extra time-factor 𝑘 , we reduce the memory consumption because we do

not need to maintain transition counters or intermediate states like CoPaR.
A practical advantage of our algorithm is that one recomputation of a block split can take into

account the changes to all the other blocks that happened since the recomputation. The Hopcroft-

CoPaR line of work, on the other hand, has to consider each change of the other blocks separately.

This advantage is of no help in the asymptotic complexity, because in the worst case only one

other split happened each time, and then our algorithm does in O(𝑘) what CoPaR can do in O(1).
However, as we shall see in the benchmarks of Section 6, in practice our algorithm outperforms

CoPaR and mCRL2, even though our algorithm is applicable to a more general class of functors.

The Moore line of work. Another line of work originates in Moore’s 1956 work on DFAminimization

[Moore 1956], which in retrospect is essentially the naive algorithm specialized to DFAs. In this

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:20 Jules Jacobs and Thorsten Wißmann

class, the most relevant for us is the algorithm by König and Küpper [König and Küpper 2014] for

coalgebras, and the distributed algorithm of Birkmann, Deifel, and Milius [Birkmann et al. 2022].

Like our algorithm, algorithms in this class split a block based on its successors, and can be applied

to general functors. Unlike the Hopcroft-CoPaR line of work and our algorithm, the running time

of these algorithms is O(𝑘𝑛2).
Another relevant algorithm in this class is the algorithm of Blom and Orzan [Blom and Orzan

2005] for transition systems. Their main algorithm runs in time O(𝑘𝑛2), but in a side note they

mention a variation of their algorithm that runs in O(𝑛 log𝑛) iterations. They do not further

analyse the time complexity or describe how to implement an iteration, because the main focus of

their paper is a distributed implementation of the O(𝑘𝑛2) algorithm, and the O(𝑛 log𝑛) variation
precludes distributed implementation. Out of all algorithms, Blom and Orzan’s O(𝑛 log𝑛) variation
is the most similar to our algorithm, in particular because their algorithm is in the Moore line of

work, yet also re-uses the old block for the largest sub-block (which is a feature that usually appears

in the Hopcroft-CoPaR line of work). However, their block splitting is different from ours and is

only correct for labelled transition systems but can not be easily applied to general functors 𝐹 .

5 INSTANCES
We give a list of examples of instances that can be supported by our algorithm. We start with the

instances that were already previously supported by CoPaR, and then give examples of instances

that were not previously supported by 𝑛 log𝑛 algorithms.

5.1 Instances also supported by CoPaR
Products and coproducts. The simplest instances are those built using the product 𝐹 ×𝐺 and disjoint

union 𝐹 +𝐺 , or in general, signature functors for countable signatures Σ. The binary encoding

of an element of signature functor (𝜎, 𝑥1, . . . , 𝑥𝑘) ∈ Σ̃𝑋 starts with a specification of 𝜎 , followed

by the concatenation of encodings of the parameters 𝑥1, . . . , 𝑥𝑘 . The functor implementation can

simply apply the substitution recursively to these elements 𝑥1, . . . , 𝑥𝑘 , without any further need for

normalization.

Powerset. The finite powerset functor Pf can be used to model transition systems as coalgebras. In

conjunction with products and coproducts, we can model nondeterministic (tree) automata and

labelled transition systems. The binary encoding of an element {𝑥1, . . . , 𝑥𝑘 } of the powerset functor,
is stored as a list of elements prefixed by its length. The functor implementation can recursively

apply the substitution to the elements of a set {𝑥1, . . . , 𝑥𝑘 }, and subsequently normalize by sorting

the resulting elements and removing adjacent duplicates.

Monoid-valued functors. The binary encoding of 𝜇 ∈ 𝑀 (𝑋)
(for a countable monoid𝑀) is an array

of pairs (𝑥𝑖 , 𝜇 (𝑥𝑖)). The binary encoding stores a list of these pairs prefixed by the length of the list.

The functor implementation recursively applies the substitution to the 𝑥𝑖 , and then sorts the pairs

by the 𝑥𝑖 value, and removes adjacent duplicate 𝑥𝑖 by summing up their associated monoid values

𝜇 (𝑥𝑖).

5.2 Instances not supported by CoPaR
Composition of functors without intermediate states. The requirement of zippability in the𝑚 log𝑛

algorithm [Deifel et al. 2019] is not closed under the composition of functors 𝐹 ◦𝐺 . As a workaround,

one can introduce explicit intermediate states between 𝐹 - and 𝐺-transitions. This introduces

potentially many more states into the coalgebra, which leads to increased memory usage. Because

our algorithm works for any computable functor, it can instead use the composed functor directly,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

Fast Coalgebraic Bisimilarity Minimization 52:21

without any pre-processing that splits each state of the automaton. This is important for practical

efficiency.

Monotone Modal Logics and Monotone Bisimulation
When reasoning about game-theoretic settings [Parikh 1985; Pauly 2001; Peleg 1987], the arising

modal logics have modal operators that talk about the ability of agents to enforce properties in the

future. This leads tomonotone modal logics whose domain of reasoning aremonotone neighbourhood
frames and the canonical notion of equivalence is monotone bisimulation. It was shown by Hansen

and Kupke [Hansen and Kupke 2004a,b] that these are an instance of coalgebras and coalgebraic

behavioural equivalence for the monotone neighbourhood functor. Instead of the original definition,

it suffices for our purposes to work with the following equivalent characterization:

Definition 5.1 [Hansen and Kupke 2004a, Lem 3.3]. The monotone neighbourhood functor

N : Set → Set is given by

N𝑋 = {𝑁 ∈ PfPf𝑋 | 𝑁 upwards closed} and N(𝑓 : 𝑋 → 𝑌) (𝑁) = ↑{𝑓 [𝑆] | 𝑆 ∈ 𝑁 }.

where ↑ denotes upwards closure.

Hence, in a coalgebra 𝑐 : 𝐶 → N𝐶 , the successor structure of a state 𝑥 ∈ 𝐶 is an upwards closed

family of neighbourhoods 𝑐 (𝑥).
To avoid redundancy, we do not keep the full neighbourhoods in memory, but only the least

elements in this family: given a family 𝑁 ∈ N𝑋 for finite 𝑋 , we define the map

atom𝑋 : PfPf𝑋 → PfPf𝑋 atom𝑋 (𝑁) = {𝑆 ∈ 𝑁 | �𝑆 ′ ∈ 𝑁 : 𝑆 ′ ⫋ 𝑆}

which transforms a monotone family into an antichain by taking the minimal elements in the

monotone family.

Definition 5.2. We can implement N-coalgebras as follows: For a coalgebra 𝑐 : 𝐶 → N𝐶 , keep

for every state 𝑥 ∈ 𝐶 an array of arrays representing atom𝐶 (𝑐 (𝑥)) ∈ PfPf𝑋 . The predecessors of a

state 𝑦 needs to be computed in advance and is given by

pred(𝑦) = {𝑥 ∈ 𝐶 | 𝑦 ∈ 𝐴 for some 𝐴 ∈ atom𝐶 (𝑐 (𝑥))}.

For the complexity analysis, we specify the out-degree as

𝑘 := max

𝑥∈𝐶

∑︁
𝑆∈atom𝐶 (𝑐 (𝑥))

|𝑆 |.

For the signature sig(𝑥, 𝑝) of a state 𝑥 w.r.t. 𝑝 : 𝐶 → N, do the following:

(1) Compute Pf [Pf [𝑝]] (𝑡) for 𝑡 := atom𝐶 (𝑐 (𝑥)) by using the sig-implementation of Pf first for

each nested set and then on the outer set. This results in a new set of sets 𝑡 ′ := Pf [Pf [𝑝]] (𝑡).
(2) For the normalization, iterate over all pairs 𝑆,𝑇 ∈ 𝑡 ′ and remove 𝑇 if 𝑆 ⫋ 𝑇 . This step is not

linear in the size of 𝑡 ′ but takes O(𝑘2) time.

For such a monotone neighbourhood frame 𝑐 : 𝐶 → N𝐶 , note that for states 𝑥 ∈ 𝐶 , another

state 𝑦 ∈ 𝐶 might be contained in multiple sets 𝑆 ∈ 𝑐 (𝑥). Still, the definition of𝑚 in the complexity

analysis is agnostic of this.

Proposition 5.3. For a monotone neighbourhood frame 𝑐 : 𝐶 → N𝐶 , let 𝑘 ∈ N be such that
|atom𝐶 (𝑐 (𝑥)) | ≤ 𝑘 for all 𝑥 ∈ 𝐶 . Algorithm 6 computes monotone bisimilarity in O(𝑘2 ·𝑚 log𝑛) time.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:22 Jules Jacobs and Thorsten Wißmann

6 BENCHMARKS
To evaluate the practical performance and memory usage of our algorithm, we have implemented

it in our tool Boa [Jules Jacobs 2022], written in Rust. The user of Boa can either use a composition

of the built-in functors to describe their automaton type, or implement their own automaton type

by implementing the interface of Section 4.1 in Rust. The user may then input the data of their

automaton using either a textual format akin to the representation in the “Coalgebra” row of

Figure 1, or use Boa’s more efficient and compact binary input format.

We test Boa on the benchmark suite of Birkmann, Deifel and Milius [Birkmann et al. 2022],

consisting of real-world benchmarks (fms & wlan – from the benchmark suite of the PRISM model

checker [Kwiatkowska et al. 2011]), and randomly generated benchmarks (wta – weighted tree

automata). For the wta benchmarks, the size of the first 5 was chosen to be maximal such that

CoPaR [Deifel et al. 2019] uses 16GB of memory, and the size of the 6th benchmark was chosen by

Birkmann, Deifel and Milius to demonstrate the scalability of their distributed algorithm.

The benchmark results are given in Table 2. The first columns list the type of benchmark and

the size of the input coalgebra. For the size, the column 𝑛 denotes the number of states and𝑚 is

the number of edges as defined in Section 4.5. In the wlan benchmarks for CoPaR [Deifel et al.

2019; Wißmann et al. 2021], the reported number of states and eges also include intermediate states

introduced by CoPaR in order to cope with functor composition, a preprocessing step which we do

not need in Boa, and thus are different from the numbers in Table 2 here.

The three subsequent columns list the running time of CoPaR, DCPR, and Boa. The last two
columns list the memory usage of DCPR and Boa. The benchmark results for DCPR and CoPaR are

those reported by Birkmann, Deifel and Milius [Birkmann et al. 2022], and were run on their high

performance computing cluster with 32 workers on 8 nodes with two Xeon 2660v2 chips (10 cores

per chip + SMT) and 64GB RAM. The memory usage of DCPR is per worker, indicated by the ×32.

Execution times of CoPaR were taken using one node of the cluster. Some entries for CoPaR are

missing, indicating that it ran out of its 16GB of memory. The benchmark results for our algorithm

were obtained on a consumer setup: on one core of a 2.3GHz MacBook Pro 2019 with 32GB of

memory.

A point to note is that compared to CoPaR, the distributed algorithm does best on the randomly

generated benchmarks. The distributed algorithm beats CoPaR in execution time by taking ad-

vantage of the large parallel compute power of the HPC cluster. This comes at the cost of O(𝑛2)
worst case complexity, but randomly generated benchmarks are more or less the best case for the
distributed algorithm, and require only a very small constant number of iterations, so that the

effective complexity is O(𝑛). The real world benchmarks on the other hand, and especially the

wlan benchmarks, need more iterations, which results in sequential CoPaR outperforming DCPR. In
general, benchmarks with transition systems with long shortest path lengths will truly trigger the

worst case of the O(𝑛2) algorithm, and can make its execution time infeasably long. In summary,

the benchmarks here are not chosen to be favourable to CoPaR and our algorithm, as they do not

trigger the time complexity advantage to the full extent.

Nevertheless, our algorithm outperforms both CoPaR and DCPR by a large margin. On the

synthetic benchmarks (wta), roughly speaking, when CoPaR takes 10 minutes, DCPR takes one

minute, and our algorithm takes a second. On the real-world wlan benchmark, the difference with

DCPR is greatest, with the largest benchmark requiring almost an hour on the HPC cluster for

DCPR, whereas our algorithm completes the benchmark in less than a second on a single thread.

Sequential CoPaR is unable to run the largest wta benchmarks, because it requires more memory

than the 16GB limit. The distributed algorithm is able to spread the required memory usage among

32 workers, thus staying under the 16GB limit per worker. Our algorithm uses sufficiently less

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

Fast Coalgebraic Bisimilarity Minimization 52:23

benchmark time (s) memory (MB)

type n % red m CoPaR DCPR Boa DCPR Boa

fms 35910 0% 237120 4 2 0.02 13×32 6

fms 152712 0% 1111482 17 8 0.10 62×32 20

fms 537768 0% 4205670 68 26 0.40 163×32 72

fms 1639440 0% 13552968 232 84 1.29 514×32 199

fms 4459455 0% 38533968 – 406 4.60 1690×32 557

wlan 248503 56% 437264 39 297 0.11 90×32 15

wlan 607727 59% 1162573 105 855 0.30 147×32 38

wlan 1632799 78% 3331976 – 2960 0.81 379×32 92

wta5(2) 86852 0% 21713000 537 71 0.85 701×32 179

wta4(2) 92491 0% 18498200 723 67 0.96 728×32 154

wta3(2) 134207 0% 20131050 689 113 1.34 825×32 175

wta2(2) 138000 0% 13800000 467 129 0.98 715×32 126

wta1(2) 154863 0% 7743150 449 160 0.74 621×32 80

wta3(2) 1300000 0% 195000000 – 1377 22.58 7092×32 1647

wta5(W) 83431 0% 16686200 642 52 1.01 663×32 142

wta4(W) 92615 0% 23153750 511 61 1.21 849×32 193

wta3(W) 94425 0% 14163750 528 59 0.76 639×32 124

wta2(W) 134082 0% 13408200 471 76 0.96 675×32 124

wta1(W) 152107 0% 7605350 566 79 0.76 642×32 82

wta3(W) 944250 0% 141637500 – 675 15.18 6786×32 1231

wta5(Z) 92879 0% 18575800 463 56 0.67 754×32 161

wta4(Z) 94451 0% 23612750 445 61 0.81 871×32 199

wta3(Z) 100799 0% 15119850 391 64 0.62 628×32 135

wta2(Z) 118084 0% 11808400 403 74 0.66 633×32 113

wta1(Z) 156913 0% 7845650 438 82 0.68 677×32 93

wta3(Z) 1007990 0% 151198500 – 645 19.55 5644×32 1325

Table 2. Time and memory usage comparison on the benchmarks of Birkmann, Deifel and Milius [Birkmann
et al. 2022]. The columns n, %red, m give the number of states, the percentage of redundant states, and the
number of edges, respectively. The results for Boa are an average of 10 runs. The results for CoPaR and DCPR
are those reported in Birkmann, Deifel and Milius [Birkmann et al. 2022]. The memory usage of DCPR is per
worker, indicated by ×32 (for the 32 workers on the HPC cluster)
The functors associated with the benchmarks are as follows: fms: 𝐹 (𝑋) = Q(𝑋) , wlan: 𝐹 (𝑋) = N × Pf (N ×
D(𝑋)), wta𝑟 (M): 𝐹 (𝑋) = 𝑀 ×𝑀 (4×𝑋 𝑟) where 𝑟 indicates the branching factor of the tree automaton, and
𝑀 =𝑊 is the monoid of 64-bit words with bitwise-or, 𝑀 = 𝑍 is the monoid of integers with addition, and
𝑀 = 2 is the monoid of booleans with logical-or.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:24 Jules Jacobs and Thorsten Wißmann

memory to be able to run all benchmarks on a single machine. In fact, it uses significantly less

memory than DCPR uses per worker. There are several reasons for this:
• Our algorithm does not require large hash tables.

• Our algorithm uses an binary representation with simple in-memory dictionary compression.

• We operate directly on the composed functor instead of splitting states into pieces.

Even the largest benchmarks stay far away from the 16GB memory limit. We are thus able to

minimize large coalgebraic transition systems on cheap, consumer grade hardware.

To assess the cost of genericity, we also compare with mCRL2, a full toolset for the verification
of concurrent systems. Among many other tasks, mCRL2 also supports minimization of transition

systems by strong bisimilarity as part of the ltsconvert command
2
and even implements multiple

algorithms for that, out of which the algorithm by Jansen et al. [Jansen et al. 2020] turned out to be

the fastest. For benchmarking, we ran its implementation in mCRL2 and compared the fastest with

the run time of Boa. As input files, we used the very large transition systems (VLTS) benchmark

suite
3
. Unfortunately, the benchmark suite is not available online in an open format, so the files

were converted with the CADP tool to the plain text .aut format, supported bymCRL2 and our tool.
The results are shown in Table 3. The benchmark consists of two series of input files, cwi and vasy,
whose file sizes ranged from a few KB to hundreds of MB (biggest vasy ws 145MB in zipped format

and biggest cwi was 630MB zipped). Surprisingly, Boa is significantly faster than the bisimilarity

minimization implemented in mCRL2. On all input files, mCRL2 and Boa agreed on the size of the

resulting partition, giving confidence in the correctness of the computed partition. It should be

noted that mCRL2 supports a wide range of bisimilarity notions (e.g. branching bisimilarity), which

our algorithm can not cover.

7 CONCLUSIONS AND FUTUREWORK
The coalgebraic approach enables generic tools for automata minimization, applying to different

types of input automata. With our coalgebraic partition refinement algorithm, implemented in our

tool Boa, we reduce the time and memory use compared to previous work. This comes at the cost

of an extra factor of 𝑘 (the outdegree of a state) in the time-complexity compared to asymptotically

optimal algorithms. Though our asymptotic complexity is not as good as the asymptotically fastest

but less generic algorithms, the evaluation shows the efficiency of our algorithm.

We wish to expand the supported system equivalence notions. So far, our algorithm is applicable

to functors on Set. More advanced equivalence and bisimilarity notions such as trace equiva-

lence [Hasuo et al. 2007; Silva and Sokolova 2011], branching bisimulations, and others from the

linear-time-branching spectrum [van Glabbeek 2001], can be understood coalgebraically using

graded monads [Dorsch et al. 2019; Milius et al. 2015], corresponding to changing the base category

of the functor from Set to, for example, the Eilenberg-Moore [Silva et al. 2013] or Kleisli [Hasuo

et al. 2007] category of a monad. For branching bisimulation, efficient algorithms exist [Groote and

Vaandrager 1990; Jansen et al. 2020], whose ideas might embed into our framework. We conjec-

ture that it is possible to adapt the algorithm to nominal sets, in order to minimize (orbit-)finite

coalgebras there [Kozen et al. 2015; Milius et al. 2016; Schröder et al. 2017; Wißmann 2023].

Up-to techniques provide another successful line of research for deciding bisimilarity. Bonchi

and Pous [Bonchi and Pous 2013] provide a construction for deciding bismilarity of two particular

states of interest, where the transition structure is unfolded lazily while the reasoning evolves. By

computing the partitions in a similarly lazy way, performance of our minimization algorithm can

hopefully be improved even further.

2
https://www.mcrl2.org/web/user_manual/tools/release/ltsconvert.html

3
https://cadp.inria.fr/resources/vlts/

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

https://www.mcrl2.org/web/user_manual/tools/release/ltsconvert.html
https://cadp.inria.fr/resources/vlts/

Fast Coalgebraic Bisimilarity Minimization 52:25

benchmark time (s) memory (MB)

type n % red m mCRL2 Boa mCRL2 Boa

cwi 142472 97% 925429 0.85 0.08 99 15

cwi 214202 63% 684419 0.63 0.15 111 16

cwi 371804 90% 641565 0.38 0.11 95 22

cwi 566640 97% 3984157 6.19 0.44 414 60

cwi 2165446 98% 8723465 10.72 1.52 978 166

cwi 2416632 96% 17605592 14.87 1.56 1780 247

cwi 7838608 87% 59101007 231.08 17.43 5777 816

cwi 33949609 99% 165318222 312.11 35.41 16698 2809

vasy 52268 84% 318126 0.31 0.04 48 7

vasy 65537 0% 2621480 6.62 0.14 553 28

vasy 66929 0% 1302664 2.56 0.08 275 18

vasy 69754 0% 520633 0.93 0.04 128 11

vasy 83436 0% 325584 0.38 0.04 86 10

vasy 116456 0% 368569 0.47 0.06 105 15

vasy 164865 99% 1619204 1.92 0.23 162 22

vasy 166464 49% 651168 0.81 0.08 116 16

vasy 386496 99% 1171872 0.67 0.08 133 28

vasy 574057 99% 13561040 18.84 2.41 1277 141

vasy 720247 99% 390999 0.38 0.05 88 31

vasy 1112490 99% 5290860 8.86 0.78 579 93

vasy 2581374 0% 11442382 31.95 2.30 2691 285

vasy 4220790 67% 13944372 31.82 2.87 2293 311

vasy 4338672 40% 15666588 34.89 3.12 3160 372

vasy 6020550 99% 19353474 34.91 4.11 2124 534

vasy 6120718 99% 11031292 15.56 2.37 1297 325

vasy 8082905 99% 42933110 72.45 3.79 4313 719

vasy 11026932 91% 24660513 60.57 6.26 2768 661

vasy 12323703 91% 27667803 63.49 8.16 3103 740

Table 3. Time and memory usage comparison on the VLTS benchmark suite (for space reasons, we have
excluded the very short running benchmarks). The columns n, %red, m give the number of states, the
percentage of redundant states, and the number of edges, respectively. The results are an average of 10 runs.
For mCRL2, the default bisim option was used, which runs the JGKW algorithm [Jansen et al. 2020].

ACKNOWLEDGMENTS
We thank Hans-Peter Deifel, Stefan Milius, Jurriaan Rot, Hubert Garavel, Sebastian Junges, Marck

van der Vegt, Joost-Pieter Katoen, and Frits Vaandrager for helpful discussions and the anonymous

referees for their valuable feedback for improving the paper. Thorsten Wißmann was supported by

the NWO TOP project 612.001.852.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

52:26 Jules Jacobs and Thorsten Wißmann

REFERENCES
Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1974. The Design and Analysis of Computer Algorithms. Addison-

Wesley, Reading, Mass.

Christel Baier, Bettina Engelen, and Mila Majster-Cederbaum. 2000. Deciding Bisimilarity and Similarity for Probabilistic

Processes. J. Comput. Syst. Sci. 60 (2000), 187–231.
Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press.

Falk Bartels, Ana Sokolova, and Erik de Vink. 2003. A hierarchy of probabilistic system types. In Coagebraic Methods in
Computer Science, CMCS 2003 (ENTCS, Vol. 82). Elsevier, 57 – 75.

Fabian Birkmann, Hans-Peter Deifel, and Stefan Milius. 2022. Distributed Coalgebraic Partition Refinement. In Tools and
Algorithms for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Proceedings, Part II
(LNCS, Vol. 13244), Dana Fisman and Grigore Rosu (Eds.). Springer, 159–177. https://doi.org/10.1007/978-3-030-99527-0_9

Johanna (Högberg) Björklund, Andreas Maletti, and Jonathan May. 2007. Bisimulation Minimisation for Weighted Tree

Automata. In Developments in Language Theory, DLT 2007 (LNCS, Vol. 4588). Springer, 229–241.
Johanna (Högberg) Björklund, Andreas Maletti, and Jonathan May. 2009. Backward and forward bisimulation minimization

of tree automata. Theor. Comput. Sci. 410 (2009), 3539–3552.
Stefan Blom and Simona Orzan. 2005. Distributed state space minimization. International Journal on Software Tools for

Technology Transfer 7, 3 (June 2005), 280–291. https://doi.org/10.1007/s10009-004-0185-2

Filippo Bonchi and Damien Pous. 2013. Checking NFA equivalence with bisimulations up to congruence. In The 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Roberto Giacobazzi and Radhia

Cousot (Eds.). ACM, 457–468. https://doi.org/10.1145/2429069.2429124

Hans-Peter Deifel, Stefan Milius, Lutz Schröder, and Thorsten Wißmann. 2019. Generic Partition Refinement and Weighted

Tree Automata. In Formal Methods – The Next 30 Years, Proc. 3rd World Congress on Formal Methods (FM 2019) (LNCS,
Vol. 11800). Springer, 280–297.

Ulrich Dorsch, Stefan Milius, and Lutz Schröder. 2019. Graded Monads and Graded Logics for the Linear Time - Branching

Time Spectrum. In 30th International Conference on Concurrency Theory, CONCUR 2019 (LIPIcs, Vol. 140), Wan J. Fokkink

and Rob van Glabbeek (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 36:1–36:16. https://doi.org/10.4230/

LIPIcs.CONCUR.2019.36

Ulrich Dorsch, Stefan Milius, Lutz Schröder, and Thorsten Wißmann. 2017. Efficient Coalgebraic Partition Refinement. In

Proc. 28th International Conference on Concurrency Theory (CONCUR 2017) (LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik.

Hubert Garavel and Frédéric Lang. 2022. Equivalence Checking 40 Years After: A Review of Bisimulation Tools (Lecture
Notes in Computer Science). https://doi.org/10.1007/978-3-031-15629-8_13

Jan Friso Groote and Frits W. Vaandrager. 1990. An Efficient Algorithm for Branching Bisimulation and Stuttering

Equivalence. In Automata, Languages and Programming, 17th International Colloquium, ICALP90, Warwick University,
England, UK, July 16-20, 1990, Proceedings (Lecture Notes in Computer Science, Vol. 443), Mike Paterson (Ed.). Springer,

626–638. https://doi.org/10.1007/BFb0032063

Jan Friso Groote, Jao Rivera Verduzco, and Erik P. de Vink. 2018. An Efficient Algorithm to Determine Probabilistic

Bisimulation. Algorithms 11, 9 (2018), 131.
H. Peter Gumm and Tobias Schröder. 2001. Monoid-labeled transition systems. In Coalgebraic Methods in Computer Science,

CMCS 2001 (ENTCS, Vol. 44(1)). Elsevier, 185–204.
Helle Hvid Hansen and Clemens Kupke. 2004a. A Coalgebraic Perspective on Monotone Modal Logic. Electron. Notes Theor.

Comput. Sci. 106 (December 2004), 121–143. https://doi.org/10.1016/j.entcs.2004.02.028

Helle Hvid Hansen and Clemens Kupke. 2004b. A Coalgebraic Perspective on Monotone Modal Logic. In Proceedings of the
Workshop on Coalgebraic Methods in Computer Science, CMCS (Electronic Notes in Theoretical Computer Science, Vol. 106),
Jirí Adámek and Stefan Milius (Eds.). Elsevier, 121–143. https://doi.org/10.1016/j.entcs.2004.02.028

Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. 2007. Generic Trace Semantics via Coinduction. Log. Methods Comput. Sci. 3, 4
(2007). https://doi.org/10.2168/LMCS-3(4:11)2007

John Hopcroft. 1971. An 𝑛 log𝑛 algorithm for minimizing states in a finite automaton. In Theory of Machines and Computa-
tions. Academic Press, 189–196.

David N. Jansen, Jan Friso Groote, Jeroen J. A. Keiren, and Anton Wijs. 2020. An O(m log n) algorithm for branching

bisimilarity on labelled transition systems. In Tools and Algorithms for the Construction and Analysis of Systems - 26th
International Conference, TACAS 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12079), Armin

Biere and David Parker (Eds.). Springer, 3–20. https://doi.org/10.1007/978-3-030-45237-7_1

ThorstenWissmann Jules Jacobs. 2022. Boa: binary coalgebraic partition refinement. https://doi.org/10.5281/zenodo.7150706

The most recent version is at https://github.com/julesjacobs/boa..

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

https://doi.org/10.1007/978-3-030-99527-0_9
https://doi.org/10.1007/s10009-004-0185-2
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.4230/LIPIcs.CONCUR.2019.36
https://doi.org/10.4230/LIPIcs.CONCUR.2019.36
https://doi.org/10.1007/978-3-031-15629-8_13
https://doi.org/10.1007/BFb0032063
https://doi.org/10.1016/j.entcs.2004.02.028
https://doi.org/10.1016/j.entcs.2004.02.028
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.5281/zenodo.7150706
https://github.com/julesjacobs/boa

Fast Coalgebraic Bisimilarity Minimization 52:27

Paris C. Kanellakis and Scott A. Smolka. 1983. CCS Expressions, Finite State Processes, and Three Problems of Equivalence.

In Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing (Montreal, Quebec, Canada)

(PODC ’83). ACM, 228–240.

Paris C. Kanellakis and Scott A. Smolka. 1990. CCS Expressions, Finite State Processes, and Three Problems of Equivalence.

Inf. Comput. 86, 1 (1990), 43–68.
Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and David Jansen. 2007. Bisimulation Minimisation Mostly Speeds Up

Probabilistic Model Checking. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2007 (LNCS,
Vol. 4424). Springer, 87–101.

Bartek Klin. 2009. Structural Operational Semantics forWeighted Transition Systems. In Semantics and Algebraic Specification:
Essays Dedicated to Peter D. Mosses on the Occasion of His 60th Birthday (LNCS, Vol. 5700), Jens Palsberg (Ed.). Springer,
121–139.

Barbara König and Sebastian Küpper. 2014. Generic Partition Refinement Algorithms for Coalgebras and an Instantiation to

Weighted Automata. In Theoretical Computer Science, IFIP TCS 2014 (LNCS, Vol. 8705). Springer, 311–325.
Dexter Kozen, Konstantinos Mamouras, Daniela Petrisan, and Alexandra Silva. 2015. Nominal Kleene Coalgebra. InAutomata,

Languages, and Programming, ICALP 2015 (lncs, Vol. 9135). springer, 286–298. https://doi.org/10.1007/978-3-662-47666-6

Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-Time Systems.

In Computer Aided Verification, Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 585–591.

Kim Guldstrand Larsen and Arne Arne Skou. 1991. Bisimulation through Probabilistic Testing. Inform. Comput. 94, 1 (1991),
1–28.

Jonathan May and Kevin Knight. 2006. Tiburon: A Weighted Tree Automata Toolkit. In Implementation and Application of
Automata, Oscar H. Ibarra and Hsu-Chun Yen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 102–113.

Stefan Milius, Dirk Pattinson, and Lutz Schröder. 2015. Generic Trace Semantics and Graded Monads. In 6th Conference on
Algebra and Coalgebra in Computer Science, CALCO 2015 (LIPIcs, Vol. 35), Lawrence S. Moss and Pawel Sobocinski (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 253–269. https://doi.org/10.4230/LIPIcs.CALCO.2015.253

Stefan Milius, Lutz Schröder, and Thorsten Wißmann. 2016. Regular Behaviours with Names. Applied Categorical Structures
24, 5 (2016), 663–701. https://doi.org/10.1007/s10485-016-9457-8

RobinMilner. 1980. ACalculus of Communicating Systems. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-10235-3
Edward F. Moore. 1956. Gedanken-Experiments on Sequential Machines. Princeton University Press, 129–154. https:

//doi.org/doi:10.1515/9781400882618-006

Robert Paige and Robert E. Tarjan. 1987. Three partition refinement algorithms. SIAM J. Comput. 16, 6 (1987), 973–989.
Rohit Parikh. 1985. The Logic of Games and its Applications. In Topics in the Theory of Computation, Selected Papers of the

International Conference on ‘Foundations of Computation Theory’, FCT '83. Elsevier, 111–139. https://doi.org/10.1016/s0304-
0208(08)73078-0

Marc Pauly. 2001. Logic for Social Software. Ph. D. Dissertation. https://dare.uva.nl/search?identifier=9ad66ec5-063d-4673-

8563-91369d0af7aa

David Peleg. 1987. Concurrent Dynamic Logic. J. ACM 34, 2 (apr 1987), 450–479. https://doi.org/10.1145/23005.23008

Lutz Schröder, Dexter Kozen, StefanMilius, and ThorstenWißmann. 2017. Nominal Automata with Name Binding. In FoSSaCS
2017 (LNCS, Vol. 10203), Javier Esparza and Andrzej Murawski (Eds.). Springer, 124–142. https://doi.org/10.1007/978-3-

662-54458-7_8

Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. 2013. Generalizing determinization from

automata to coalgebras. Log. Methods Comput. Sci. 9, 1 (2013). https://doi.org/10.2168/LMCS-9(1:9)2013

Alexandra Silva and Ana Sokolova. 2011. Sound and Complete Axiomatization of Trace Semantics for Probabilistic

Systems. Electronic Notes in Theoretical Computer Science 276 (2011), 291–311. https://doi.org/10.1016/j.entcs.2011.09.027

Twenty-seventh Conference on the Mathematical Foundations of Programming Semantics (MFPS XXVII).

Antti Valmari. 2009. Bisimilarity Minimization in O(𝑚 log𝑛) Time. In Applications and Theory of Petri Nets, PETRI NETS
2009 (LNCS, Vol. 5606). Springer, 123–142.

Antti Valmari. 2010. Simple Bisimilarity Minimization in O(m log n) Time. Fundam. Informaticae 105, 3 (2010), 319–339.
https://doi.org/10.3233/FI-2010-369

Antti Valmari and Giuliana Franceschinis. 2010. Simple O(𝑚 log𝑛) Time Markov Chain Lumping. In Tools and Algorithms
for the Construction and Analysis of Systems, TACAS 2010 (LNCS, Vol. 6015). Springer, 38–52.

Antti Valmari and Petri Lehtinen. 2008. Efficient Minimization of DFAs with Partial Transition. In Theoretical Aspects of
Computer Science, STACS 2008 (LIPIcs, Vol. 1). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany, 645–656.

Rob J. van Glabbeek. 2001. The Linear Time - Branching Time Spectrum I. In Handbook of Process Algebra, Jan A. Bergstra,

Alban Ponse, and Scott A. Smolka (Eds.). North-Holland / Elsevier, 3–99. https://doi.org/10.1016/b978-044482830-9/50019-

9

Glynn Winskel. 1993. The formal semantics of programming languages - an introduction. MIT Press.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

https://doi.org/10.1007/978-3-662-47666-6
https://doi.org/10.4230/LIPIcs.CALCO.2015.253
https://doi.org/10.1007/s10485-016-9457-8
https://doi.org/10.1007/3-540-10235-3
https://doi.org/doi:10.1515/9781400882618-006
https://doi.org/doi:10.1515/9781400882618-006
https://doi.org/10.1016/s0304-0208(08)73078-0
https://doi.org/10.1016/s0304-0208(08)73078-0
https://dare.uva.nl/search?identifier=9ad66ec5-063d-4673-8563-91369d0af7aa
https://dare.uva.nl/search?identifier=9ad66ec5-063d-4673-8563-91369d0af7aa
https://doi.org/10.1145/23005.23008
https://doi.org/10.1007/978-3-662-54458-7_8
https://doi.org/10.1007/978-3-662-54458-7_8
https://doi.org/10.2168/LMCS-9(1:9)2013
https://doi.org/10.1016/j.entcs.2011.09.027
https://doi.org/10.3233/FI-2010-369
https://doi.org/10.1016/b978-044482830-9/50019-9
https://doi.org/10.1016/b978-044482830-9/50019-9

52:28 Jules Jacobs and Thorsten Wißmann

ThorstenWißmann, Hans-Peter Deifel, StefanMilius, and Lutz Schröder. 2021. From generic partition refinement to weighted

tree automataminimization. Formal Aspects of Computing (March 2021), 1–33. https://doi.org/10.1007/s00165-020-00526-z

Thorsten Wißmann. 2023. Supported Sets – A New Foundation For Nominal Sets And Automata. In Computer Science Logic
(CSL’23) (LIPIcs). http://arxiv.org/abs/2201.09825 to appear.

Thorsten Wißmann, Ulrich Dorsch, Stefan Milius, and Lutz Schröder. 2020. Efficient and Modular Coalgebraic Partition

Refinement. Logical Methods in Computer Science 16:1 (January 2020), 8:1–8:63. https://doi.org/10.23638/LMCS-16(1:8)2020

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 52. Publication date: January 2023.

https://doi.org/10.1007/s00165-020-00526-z
http://arxiv.org/abs/2201.09825
https://doi.org/10.23638/LMCS-16(1:8)2020

	Abstract
	1 Introduction
	2 Fast Coalgebraic Bisimilarity Minimization in a Nutshell
	2.1 Behavioural equivalence of states in F-automata, generically
	2.2 Minimizing F-automata, generically: the naive algorithm
	2.3 The challenge: a generic and efficient algorithm
	2.4 Hopcroft's trick: the key to efficient automaton minimization
	2.5 A sketch of our generic and efficient algorithm

	3 Coalgebra and Bisimilarity, Formally
	4 Coalgebraic Partition Refinement
	4.1 Representing Abstract Data
	4.2 The Naive Method Coalgebraically
	4.3 The Refinable Partition Data Structure
	4.4 Optimized Algorithm
	4.5 Complexity Analysis
	4.6 Comparison to related work on the algorithmic level

	5 Instances
	5.1 Instances also supported by CoPaR
	5.2 Instances not supported by CoPaR

	6 Benchmarks
	7 Conclusions and Future Work
	Acknowledgments
	References

