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Higher-Order Leak and Deadlock Free Locks
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Reasoning about concurrent programs is challenging, especially if data is shared among threads. Program

correctness can be violated by the presence of data races—whose prevention has been a topic of concern both

in research and in practice. The Rust programming language is a prime example, putting the slogan fearless

concurrency in practice by not only employing an ownership-based type system for memory management,

but also using its type system to enforce mutual exclusion on shared data. Locking, unfortunately, not only

comes at the price of deadlocks but shared access to data may also cause memory leaks.
This paper develops a theory of deadlock and leak freedom for higher-order locks in a shared memory

concurrent setting. Higher-order locks allow sharing not only of basic values but also of other locks and

channels, and are themselves first-class citizens. The theory is based on the notion of a sharing topology,
administrating who is permitted to access shared data at what point in the program. The paper first develops

higher-order locks for acyclic sharing topologies, instantiated in a 𝜆-calculus with higher-order locks and

message-passing concurrency. The paper then extends the calculus to support circular dependencies with
dynamic lock orders, which we illustrate with a dynamic version of Dijkstra’s dining philosophers problem.

Well-typed programs in the resulting calculi are shown to be free of deadlocks and memory leaks, with proofs

mechanized in the Coq proof assistant.
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1 INTRODUCTION
Today’s applications are inherently concurrent, necessitating programming languages and con-

structs that support spawning of threads and sharing of resources. Sharing of resources among

threads, a sine qua non for many applications, is the source of many concurrency-related software

bugs. The issue is the possibility of a race condition, if simultaneous write and read accesses are

performed to shared data. To rule out data races, locks can be employed, forcing simultaneous

accesses to happen in mutual exclusion from each other. Locking unfortunately not only comes at

the cost of deadlocks, but shared access to data may also cause memory leaks.
This paper develops a 𝜆-calculus with higher-order locks and message-passing concurrency, where

well-typed programs are free of memory leaks and deadlocks. Whereas there exist type systems

for memory safety—most notably Rust [Jung et al. 2018a; Matsakis and Klock 2014], incorporating

ideas of ownership types [Clarke et al. 1998; Müller 2002] and region management [Grossman

et al. 2002; Tofte and Talpin 1997]—memory safety only ensures that no dangling pointers are

dereferenced, but does not rule out memory leaks. Similarly, type systems for deadlock and leak

Authors’ addresses: Jules Jacobs, mail@julesjacobs.com, Radboud University, Nijmegen, The Netherlands; Stephanie Balzer,

balzers@cs.cmu.edu, Carnegie Mellon University, Pittsburgh, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART36

https://doi.org/10.1145/3571229

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 36. Publication date: January 2023.

https://doi.org/10.1145/3571229
https://doi.org/10.1145/3571229


36:2 Jules Jacobs and Stephanie Balzer

freedom have been developed, pioneered by Igarashi and Kobayashi [1997]; Kobayashi [1997];

Kobayashi et al. [1999] in the context of the 𝜋-calculus and by Caires and Pfenning [2010]; Wadler

[2012] in the context of linear logic session types. Our work builds on the latter and extends it with

the capability to share resources as present in a shared memory setting.

It may come as a surprise that locking not only can cause deadlocks but also memory leaks. We

give an example of a memory leak caused by a mutex in Rust below:

struct X { x: Option<Arc<Mutex<X>>> } // declare type that will be stored in the mutex

let m1 = Arc::new(Mutex::new(X { x: None })); // create mutex with empty payload

let m2 = m1.clone(); // create a second reference to the mutex, incrementing refcount

let mut g = m1.lock(); // acquire the mutex, giving access to the contents

*g = X { x: Some(m2) }; // mutate the contents to store m2 in the mutex

drop(g); // release the lock

drop(m1); // drop the reference to the mutex, decrementing the refcount

On the first line, we declare a recursive struct, that optionally contains a reference to a mutex that

is reference counted. On the second line, we then create such a mutex, initially with empty payload.

We then clone the reference to the mutex, raising the reference count to 2. Finally, we lock the

mutex through the first reference and store the second reference in it, transferring ownership of m2

to the mutex. On the last line, we release the mutex and drop the reference to m1. This decrements

the reference count to 1, but there still exists a self-reference from inside the mutex, leading to a

memory leak.

It is tempting to conclude from the above example that recursive types are necessary to create

memory leaks. This is not the case, however. Instead of storing the mutex inside the mutex directly,

one can store a closure of type unit → unit that captures the mutex in its lexical environment.

Memory leaks can moreover be caused by channels, as illustrated by the below Rust code:

struct Y { y: Receiver<Y> } // declare type that will be sent over the channel

let (s,r) = mpsc::channel(); // create a channel with sender s and receiver r

s.send(Y { y: r }); // put the receiver in the buffer of the channel

drop(s); // drop the reference to the sender; but memory is leaked

On the first line, we declare a recursive struct with a reference to a receiver endpoint of a channel.

On the second line, we then allocate a channel, which gives us a sender s and receiver r. We then

send the receiver along the sender, transferring it into the channel’s buffer. When we drop the

sender, the reference to the receiver still exists from within the buffer, creating a memory leak.

Unsurprisingly, we can use the same concurrency constructs to also cause deadlocks. For example,

a thread my allocate a new channel, keep both the sender and the receiver reference, and attempt

to receive from the receiver before sending along the sender:

let (s,r) = mpsc::channel(); // create a new channel

r.recv(); // this call blocks on receiving a message, deadlock!

s.send(3); // the message is sent, but too late

Similarly, mutexes can give rise to deadlocks. Consider the following swap function:

fn swap(m1: &Mutex<i32>, m2: &Mutex<i32>) {

let mut g1 = m1.lock(); // acquire first mutex

let mut g2 = m2.lock(); // acquire second mutex

let tmp = *g1; // obtain the contents stored in m1
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*g1 = *g2; // replace the contents of m1 with the contents of m2

*g2 = tmp; // replace the contents of m2 with the original contents of m1

drop(g1); drop(g2) // release the locks

}

This function takes two references to mutexes, locks both, and swaps their contents. Now let’s

consider the below code that calls this function:

let m1 = Arc::new(Mutex::new(1)); // create a new mutex

let m2 = m1.clone(); // create a second reference to the mutex

swap(&m1,&m2); // deadlock!

The code allocates a mutex, yielding the reference m1, and then creates an alias m2 to the same

mutex. Then it calls function swapwith m1 and m2 as arguments. The function will deadlock upon the

second acquire, which will block until the first one is released. This last example also demonstrates

that reasoning about deadlocks—and for that matter memory leaks—is not inherently local. Both

the function swap and the above code are benign on their own but problematic when composed.

The above examples use the API constructs Arc<Mutex<T>> and Rc<RefCell<T>> to cause memory

leaks and deadlocks, suggesting that substructural typing is insufficient to rule out memory leaks

and deadlocks, but that memory leak and deadlock freedom must be accounted for at the level of

API design. Based on this observation, we develop a 𝜆-calculus for shared memory concurrency

with a lock data type, guaranteeing absence of memory leaks and deadlocks by type checking.

Memory leaks are especially bothersome for resource-intensive applications, and deadlocks can

prevent an entire application from being productive. We phrase our lock API and type system

in a 𝜆-calculus setting to keep it independent of an actual target language, yet readily adoptable

by any language with similar features. Locks in our calculus are higher-order, allowing them to

store not only basic values but also other locks. This feature enables us to encode session typed
channels [Honda 1993; Honda et al. 1998]. These channels are also higher-order, and can thus be

stored in locks and sent over each other as well.

While higher-order locks and channels increase the expressivity of our calculus and scale it to

realistic application scenarios, they also challenge our goal to ensure deadlock and leak freedom

by type checking. Our approach is to account for an application’s sharing topology, which tracks,

for every lock, (i) who has references to the lock, (ii) who is responsible for releasing the lock,

and (iii) who is responsible for deallocating the lock. The fundamental invariant that we place

on the sharing topology demands that there never exist any circular dependencies among these

responsibilities at any point in the execution of a program.

We first develop the calculus 𝜆lock, which enforces this invariant preemptively, by demanding

that the sharing topology be acyclic. As a result, 𝜆lock enjoys memory leak and deadlock freedom,

with corresponding theorems and proofs developed in Section 4 and Section 5, respectively. We then

introduce the calculus 𝜆lock++, an extension of 𝜆lock that supports circular resource dependencies, as

famously portrayed by Dijkstra’s dining philosophers problem, while preserving memory leak and

deadlock freedom. 𝜆lock++ permits cyclic sharing dependencies within lock groups using a lock order,
but satisfies the sharing topology’s fundamental invariant between different lock groups. These

orders are purely local to a lock group and can change dynamically by the addition or removal of

locks to and from a group. Local orders are compositional in that they remove the need for local

orders to comply with each other or a global lock order when acquiring locks from distinct groups.

The proofs of memory leak and deadlock freedom for 𝜆lock and 𝜆lock++ are mechanized in the Coq

proof assistant and detailed in Section 7.
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In summary, this paper contributes.

• A notion of acyclic sharing topology to rule out circular dependencies without any restriction

on the order in which operations must be performed,

• the language 𝜆lock with higher-order locks for shared memory concurrency and type system

based on the sharing topology to ensure memory leak freedom and deadlock freedom,

• an encoding of session-typed message-passing channels in terms of locks,

• the language 𝜆lock++, an extension supporting cyclic unbounded process networks,

• proofs of deadlock and memory leak freedom for well-typed 𝜆lock and 𝜆lock++ programs,

mechanized in Coq.

2 KEY IDEAS AND EXAMPLES
This section develops the notion of a sharing topology underlying our calculus and illustrates its

type system based on examples. We start by deriving the fundamental invariant to be preserved

by the sharing topology in several steps, distilling several key principles. We first focus on acyclic
sharing topologies, resulting in the calculus 𝜆lock, which we then extend to account for cyclic sharing
dependencies, resulting in the calculus 𝜆lock++.

2.1 Invariant for Leak and Deadlock Freedom
The examples of memory leaks and deadlocks discussed in Section 1 all share a common pattern:

a thread has several references to the same lock, introducing self-referential responsibilities for

releasing and deallocating locks. Our goal is to devise a system that allows threads to reason
locally about shared resources and, in particular, to give threads complete freedom to
acquire and release any lock they reference. Our approach thus opts for restricting the propa-

gation of lock references by an individual thread rather than their use. To forbid the self-referential

scenarios discussed in Section 1, the fundamental invariant of the sharing topology must satisfy

the following principle:

Principle 1: Each thread only holds one reference to any given lock.

To satisfy this principle our calculus treats locks linearly, ensuring that references to locks cannot

be duplicated within a thread.

The above principle is obviously not yet sufficient for ruling out deadlocks, as deadlocks can

also result when two threads compete for resources. For example, consider two threads 𝑇1 and 𝑇2
with references to locks 𝑙1 and 𝑙2. A deadlock can arise if thread 𝑇1 tries to acquire lock 𝑙1 and then

𝑙2, and thread𝑇2 tries to acquire lock 𝑙2 and then lock 𝑙1. Therefore, the fundamental invariant must

also satisfy the following principle (which Section 6 relaxes by permitting sharing of a group of

locks rather than an individual lock):

Principle 2: Any two threads may share at most one lock.

This principle is still not yet sufficient for ruling out deadlocks. Consider an example with 3

threads 𝑇1,𝑇2,𝑇3, and 3 locks 𝑙1,𝑙2,𝑙3, where:

• thread 𝑇1 acquires 𝑙1 and then 𝑙2
• thread 𝑇2 acquires 𝑙2 and then 𝑙3
• thread 𝑇3 acquires 𝑙3 and then 𝑙1

If a schedule allows each thread to acquire their first lock, the threads will subsequently deadlock

when trying to acquire their second lock. Note, however, that the preceding principle is satisfied:

thread 𝑇1 and 𝑇2 only share lock 𝑙2, thread 𝑇2 and 𝑇3 only share lock 𝑙3, and tread 𝑇3 and 𝑇1 only

share lock 𝑙1. Thus, if we want to uphold thread local reasoning, while guaranteeing that thread
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composition preserves deadlock freedom, we must impose a stronger invariant, constraining the

sharing topology:

Principle 3: If we consider the graph where threads are connected to the locks they
hold a reference to, this graph must not have a cycle.

Our calculus enforces this principle by the following lock and thread operations, which bear a

resemblance to channels in linear logic session types based on cut elimination [Caires and Pfenning

2010; Wadler 2012]:

• new to create a new lock. Threads are free to use this operation. Because the lock is created,

the creating thread is the only one to have a reference to it.

• acquire to acquire a lock. This operation can be called at any time, but the type system must

ensure that the same lock cannot be acquired multiple times via the same reference.

• release to release the lock. This operation can be called at any time, and the type system

must ensure that it is called eventually for any acquired lock.

• fork, which forks off a new thread, and allows the programmer to create a new reference to

one lock from the parent thread and share it with the child thread.

Although the fork construct allows duplicating a lock reference, the newly created reference

must be passed to the forked off thread, creating a new edge between the new thread and the

lock. If we restrict sharing of a lock between a parent and child thread to exactly one lock, the
graph arising from the reference structure between threads and locks remains acyclic. For example,

consider the threads 𝑇1,𝑇2,𝑇3 and locks 𝑙1 and 𝑙2 such that:

• threads 𝑇1 and 𝑇2 share lock 𝑙1
• threads 𝑇1 and 𝑇3 share lock 𝑙2

If𝑇1 spawns𝑇4 and provides a reference to 𝑙1, the resulting reference structure remains acyclic:𝑇1 is

connected to 𝑙1 and 𝑙2, with the former being connected to 𝑇2 and 𝑇4 and the latter being connected

to 𝑇3. However, if we allowed 𝑇1 to share both 𝑙1 and 𝑙2 with 𝑇4, the graph becomes cyclic: 𝑇1 is

connected to 𝑇4 both via 𝑙1 and 𝑙2.

The type system that we sketch in the next section and detail in Section 3 enforces the above

rules and thus upholds the principles derived so far to rule out deadlocks. A reader may wonder

whether these principles are strong enough for asserting deadlock freedom in the presence of

higher-order locks, allowing us to store locks in locks. For example, we can easily transfer a lock

𝑙1 from thread 𝑇1 to thread 𝑇2 by storing it in a lock 𝑙2 shared between 𝑇1 and 𝑇2, allowing 𝑇2 to

retrieve 𝑙1 by acquiring 𝑙2. This scenario is indeed possible and turns out not to be a problem. While

not immediately obvious, this transfer actually preserves acyclicity of the sharing topology. To

account for the possibility of references between locks, we refine our invariant as follows:

Principle 4: If we consider the graph where threads are connected to the locks they
hold a reference to, and locks are connected to locks they hold a reference to, this graph
must not have a cycle.

Principle 4 amounts to an invariant that is sufficient to ensure deadlock freedom. Section 5 details

that a well-typed 𝜆lock program preserves this invariant along transitions. The next question to

explore is whether this invariant is also sufficient to ensure memory leak freedom.

It seems that the above invariant is sufficient for ruling out the examples of memory leaks

portrayed in Section 1, because they are all instances of self-referential structures, prevented by

the above invariant. However, to answer this question entirely, we have to remind ourselves of our

definition of a sharing topology given in Section 1:
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Definition 2.1. A sharing topology tracks, for every lock, (i) who has references to the lock, (ii)
who is responsible for releasing the lock, and (iii) who is responsible for deallocating the lock.

So far, we have only accommodated the first two ingredients, but yet have to establish responsibility

of lock deallocation.

To get started, let us first explore the question of "how to ever safely get rid of a lock". Obviously,
we should not attempt to drop a reference to a lock that we have acquired, because then this lock

would never be released, blocking any other threads that are trying to acquire that lock. So, is it

then safe to drop a reference to a lock that we have not currently acquired? As a matter of fact even

this is not safe, if we allow storing linear data in locks. For example, we could then easily discard a

linear value 𝑣 as follows, which would defeat the purpose of linear typing:

(1) Create a new lock and acquire it.

(2) Put the linear value 𝑣 in the lock.

(3) Release the lock.

(4) Drop the reference to the lock.

We thus face the following conundrum: if we allow dropping references to an acquired lock, then

we cannot leak data, but we get deadlocks, and if we allow dropping references to a non-acquired

lock, then we can leak data (which then allows us to create deadlocks anyway).

It seems that we have to circle back to Definition 2.1 and find a way to designate one reference

among all the references to a lock as the one that carries the responsibility for deallocation. For this

purpose we differentiate lock references into an owning reference, which carries the responsibility to

deallocate the lock, and client references, which can be dropped. Naturally, there must exist exactly

one owning reference. An owning reference can only be dropped after the lock has been deallocated.

To deallocate the lock, the owner must first wait for all the clients to drop their references and then

retrieve the contents of the lock.

This brings us to our final invariant:

Principle 5: If we consider the graph where threads are connected to the locks they
hold a reference to, and locks are connected to locks they hold a reference to, this graph
must not have a cycle. Furthermore, each lock must have precisely one owning reference,
and zero or more client references.

2.2 The Lock⟨𝜏 𝑎
𝑏
⟩ Data Type and its Operations

Let us now investigate what a lock API and type system based on these principles look like. A

detailed discussion of the resulting language 𝜆lock is given in Section 3.

We introduce the following type of lock references:

Lock⟨𝜏 𝑎
𝑏
⟩

where

• 𝜏 ∈ Type is the type of values stored in the lock.

• 𝑎 ∈ {0, 1} indicates whether this reference is the owner (𝑎 = 1) or a client (𝑎 = 0).

• 𝑏 ∈ {0, 1} indicates whether this reference has acquired the lock (𝑏 = 1) or not (𝑏 = 0).

𝜆lock supports the following operations to acquire and release locks:

acquire : Lock⟨𝜏 𝑎
0
⟩ → Lock⟨𝜏 𝑎

1
⟩ × 𝜏

release : Lock⟨𝜏 𝑎
1
⟩ × 𝜏 → Lock⟨𝜏 𝑎

0
⟩

These operations are linear and hence consume their argument. Both operations return the lock

argument reference at a different type, reflecting whether the lock is currently acquired or not. The
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acquire operation gives the user full access to the 𝜏 value protected by the lock, and the release

operation requires the user to put back a 𝜏 value. Acquire and release operations work for 𝑎 ∈ {0, 1},
so both clients and the owner are allowed to acquire and release the lock. We find it helpful to

think of a lock as a shared "locker" or container to exchange valuables. Using this metaphor, we can

perceive an acquire as opening the closed locker to retrieve the valuable and a release as closing an

open locker to store the valuable. If a reference ℓ is of type Lock⟨𝜏 𝑎
1
⟩, indicating that the locker has

been opened, the holder of the reference is responsible for eventually putting back the valuable

using a release. If a reference ℓ is of type Lock⟨𝜏 𝑎
0
⟩, indicating that the locker has not been opened

via the reference ℓ , the holder of the reference is allowed to try to acquire the locker.

Let us now look at how locks are created and destroyed. We have three operations, one for

creating a lock, one for deallocating a lock via its owning reference, and one for dropping a client

reference to a lock:

new : 1 → Lock⟨𝜏 1

1
⟩

wait : Lock⟨𝜏 1

0
⟩ → 𝜏

drop : Lock⟨𝜏 0

0
⟩ → 1

The operation new creates an owning reference. The operation wait on the owning reference

waits for all clients to finish and then returns ownership of the value 𝜏 stored in the lock (and

frees the memory associated with the lock). The operation drop on a client reference yields unit,

effectively not returning anything. The drop operation could potentially be automatically inserted

by a compiler, as it is done by the Rust compiler, for example, but we prefer to be explicit. Note

that both wait and drop require the lock to be in a non-acquired (a.k.a., closed) state, which means

that a thread holding an open lock reference must fulfill its obligation to put a value back into the

lock using release before it is allowed to use drop or wait on that lock reference. This ensures that

drop and wait cannot cause another thread’s acquire to deadlock. The details of deadlock freedom

can be found in Sections 4 and 5.

Client references are created upon fork:

fork : Lock⟨𝜏 𝑎1+𝑎2
𝑏1+𝑏2 ⟩ × (Lock⟨𝜏 𝑎2

𝑏2
⟩ −◦ 1) → Lock⟨𝜏 𝑎1

𝑏1
⟩

It may be helpful to consider an example, where ℓ has type Lock⟨𝜏 𝑎1+𝑎2
𝑏1+𝑏2 ⟩:

let ℓ1 : Lock⟨𝜏 𝑎1
𝑏1
⟩ = fork(ℓ, 𝜆ℓ2 : Lock⟨𝜏 𝑎2

𝑏2
⟩. (· · · ))

The fork operation consumes the original lock reference ℓ , and splits it into two references, ℓ1 and

ℓ2. The reference ℓ1 is returned to the main thread, and the reference ℓ2 is passed to the child thread.

The child thread runs the code indicated by (· · · ), which has access to ℓ2. In terms of types,

Lock⟨𝜏 𝑎1+𝑎2
𝑏1+𝑏2 ⟩ is split into

{
Lock⟨𝜏 𝑎1

𝑏1
⟩

Lock⟨𝜏 𝑎2
𝑏2
⟩

such that 𝑎1 + 𝑎2 ≤ 1 and 𝑏1 + 𝑏2 ≤ 1. This condition ensures that if the original reference ℓ is an

owner reference and thus of type Lock⟨𝜏 1

𝑏
⟩, it can only be split into an owner reference and client

reference. Conversely, if the original lock reference ℓ is a client reference and thus of type Lock⟨𝜏 0

𝑏
⟩,

it can only be split into two client references. Similarly, if the original reference ℓ is acquired and

thus of type Lock⟨𝜏 𝑎
1
⟩, only one of the new references is acquired. If the original reference ℓ is not

acquired and thus of type Lock⟨𝜏 𝑎
0
⟩, the two new references are not acquired either.

The standard rules of binding and scope apply to the lambda used in a fork as well. For example,

we can transfer linear resources from the main thread to a child thread, e.g., the resource bound to
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the linear variable 𝑟 in the following example:

let ℓ = new() in
let 𝑟 = new() in
let ℓ1 = fork(ℓ, 𝜆ℓ2. (· · · 𝑟 · · · )) in (· · · )

Here, the resources 𝑟 can no longer be used in the main thread because of linearity.

These are all the constructs of 𝜆lock that concern locks. Section 3 details how we integrate 𝜆lock
with session-typed channels, facilitating the exchange of locks between threads not only by storing

them into other locks, but also by sending them along channels, possibly as part of a compound

data structure. Channels, of course, are first-class as well, allowing them to be sent over each other

and stored in locks. Given the range of possibilities of how the sharing topology of a program

can change dynamically, a reader may be surprised that 𝜆lock asserts memory leak and deadlock

freedom by type checking. After all, as usual, the devil is in the details! The formal statement of

memory leak and deadlock freedom is given in Section 4, and their proof is sketched in Section 5.

For the full details, the reader is referred to the mechanization Section 7.

2.3 Examples
We now look at a few examples that illustrate the use of lock operations.

2.3.1 Locks as mutable references. A lock without any client references can be viewed as a linear

mutable reference cell. We can create such a reference cell with ℓ = release(new(), 𝑣), read its

value with acquire(ℓ), and write into it a new value with release(ℓ, 𝑣). We can also deallocate the

reference with wait(ℓ), which gives us back the value.

let ℓ = release(new(), 1) in
let ℓ, 𝑛 = acquire(ℓ) in
let ℓ = release(ℓ, 𝑛 + 1) in
let𝑚 = wait(ℓ)

If the values we store in the cell are of unrestricted type (duplicable and droppable), we can

implement references with ref , get, and set as follows:

ref : 𝜏 → Lock⟨𝜏 1

0
⟩

ref (𝑣) ≜ release(new(), 𝑣)

get : Lock⟨𝜏 𝑎
0
⟩ → Lock⟨𝜏 𝑎

0
⟩ × 𝜏 where 𝜏 unr

get(ℓ) ≜ let ℓ, 𝑣 = acquire(ℓ) in (release(ℓ, 𝑣), 𝑣)

set : Lock⟨𝜏 𝑎
0
⟩ × 𝜏 → Lock⟨𝜏 𝑎

0
⟩ where 𝜏 unr

set(ℓ, 𝑣) ≜ let ℓ, 𝑣 ′ = acquire(ℓ) in release(ℓ, 𝑣)
Similarly, we can atomically exchange the value as follows or apply a function to the value as

follows:

xchng : Lock⟨𝜏 𝑎
0
⟩ × 𝜏 → Lock⟨𝜏 𝑎

0
⟩ × 𝜏

xchng(ℓ, 𝑣) ≜ let ℓ, 𝑣 ′ = acquire(ℓ) in (release(ℓ, 𝑣), 𝑣 ′)

modify : Lock⟨𝜏 𝑎
0
⟩ × (𝜏 −◦ 𝜏) → Lock⟨𝜏 𝑎

0
⟩

modify(ℓ, 𝑓 ) ≜ let ℓ, 𝑣 = acquire(ℓ) in release(ℓ, 𝑓 𝑣)
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These operations work even for linear values, since neither 𝑣 nor 𝑣 ′ are duplicated or dropped.

2.3.2 Fork-join / futures / promises. In the generalised fork-join model with futures / promises, the

parent thread can spawn a child thread to do some work, and later synchronize with the child to

obtain the result. Our lock operations directly support this:

• The parent thread creates a new lock using ℓ = new().
• The parent forks off the child thread, sharing an opened client reference to ℓ with the child.

• The parent thread continues doing other work, and eventually calls wait(ℓ) on the lock.

• When the child thread is done with the work, it calls release(ℓ, 𝑣) with the result 𝑣 .

This is illustrated in the following program:

let ℓ = fork(new(), 𝜆ℓ . · · · drop(release(ℓ, 𝑣)) · · · ) in
· · ·
let 𝑣 = wait(ℓ)

Note how the type system ensures deadlock and leak freedom:

• Initially, new : Lock⟨𝜏 1

1
⟩, i.e., the lock is an open owner reference.

• When we fork, we split the lock up into Lock⟨𝜏 1

0
⟩ and Lock⟨𝜏 0

1
⟩.

• The closed and owning reference of type Lock⟨𝜏 1

0
⟩ goes to the parent, who eventually waits

for the result.

• The open and client reference of type Lock⟨𝜏 0

1
⟩ goes to the child, who must put a value in it

in order to drop it.

Of course, the client is free to pass around its reference to the lock, which acts as a future/promise,

so that somebody else can fulfill the obligation to release the lock by putting a value in it.

2.3.3 Concurrently shared data. The parent thread can spawn multiple child threads and create a

new lock for each, as in the fork-join pattern. However, the parent can also create one lock, put an

initial data structure 𝑣 in it, and share lock references with several children, who may each acquire

and mutate the lock’s contents repeatedly:

let ℓ = release(new(), 𝑣) in
let ℓ = fork(ℓ, 𝜆ℓ . · · · ) in
let ℓ = fork(ℓ, 𝜆ℓ . · · · ) in
let ℓ = fork(ℓ, 𝜆ℓ . · · · ) in
· · ·
let 𝑣 ′ = wait(ℓ)

Children are of course free to fork off children of their own, all sharing access to the same lock ℓ .

2.3.4 Bank example. Consider three bank accounts whose balances are stored in locks ℓ1, ℓ2, ℓ3. The

main thread acts as the bank, spawns three clients, and gives them access to their bank account so

that they can deposit and withdraw money from it:

let ℓ1 = fork(release(new(), 0), 𝜆ℓ1. · · · 𝑐𝑙𝑖𝑒𝑛𝑡 1 · · · ) in
let ℓ2 = fork(release(new(), 0), 𝜆ℓ2. · · · 𝑐𝑙𝑖𝑒𝑛𝑡 2 · · · ) in
let ℓ3 = fork(release(new(), 0), 𝜆ℓ3. · · · 𝑐𝑙𝑖𝑒𝑛𝑡 3 · · · ) in
· · ·
let ℓ1, ℓ2 = transaction(ℓ1, ℓ2, 50) in · · ·
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The bank does a transaction between ℓ1 and ℓ2:

transaction : Lock⟨int 𝑎
0
⟩ × Lock⟨int 𝑎

0
⟩ × int −◦ Lock⟨int 𝑎

0
⟩ × Lock⟨int 𝑎

0
⟩

transaction(ℓ1, ℓ2, amount) ≜
let ℓ1, balance1 = acquire(ℓ1) in
let ℓ2, balance2 = acquire(ℓ2) in
if balance1 ≥ amount then

(release(ℓ1, balance1 − amount), release(ℓ2, balance2 + amount))
else

(release(ℓ1, balance1), release(ℓ2, balance2))

Note that we did not have to keep track of any lock orders, or had to do any other analysis to

show that this does not deadlock, regardless of what the rest of the program does. In Section 6 we

introduce lock groups, which allow us to extend this example to multiple bank threads sharing

multiple locks, still ensuring deadlock and memory leak freedom.

2.3.5 Shared mutable recursive data structures. We can define a recursive type tree where each
node is protected by a lock and stores a value of type 𝜏 :

tree ≜ Lock⟨1 + tree × 𝜏 × tree 1

0
⟩

These trees own their children. In order to operate over such trees conurrently, we define the

type tree′ of client references to trees:

tree′ ≜ Lock⟨1 + tree × 𝜏 × tree 0

0
⟩

The main thread can now allocate a tree, and share multiple client references of type tree′ with
child threads. Using a client reference we can not only modify the root, but we can also traverse

the tree. For instance, to try and obtain a client reference to the left child (if any), we acquire the

lock, create a client reference to the left child (using fork), and release the lock:

left : tree′ −◦ 1 + tree′

left(ℓ) ≜
let ℓ, 𝑡 = acquire(ℓ) in
match 𝑡 with
inL () ⇒ release(ℓ, inL ()); inL ()
inR (ℓ1, 𝑥, ℓ2) ⇒ inR (fork(ℓ1, 𝜆ℓ1. release(ℓ, inR (ℓ1, 𝑥, ℓ2))))
end

Note that fork operates as an administrative device here; when we acquire the lock ℓ we obtain

owning references ℓ1, ℓ2 to the children, and fork allows us to obtain a client reference for ℓ1 while

putting the owning references back in the lock ℓ . One would not actually fork a thread in a real

implementation.

Because we immediately release the lock after obtaining a child reference, we can have multiple

threads operate on different parts on the tree concurrently, while guaranteeing leak and deadlock

freedom.

2.3.6 Client-server. Our language also comes equipped with linear channels for message-passing

concurrency that can be session-typed, thanks to our encoding detailed in Section 3.1. Using locks,

we can share a channel endpoint among multiple participants, which allows us to implement a

client-server pattern, as is possible in the deadlock-free fragment of manifest sharing [Balzer and
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Pfenning 2017].

let 𝑐 = (· · · create new server channel · · · ) in
let ℓ = release(new(), 𝑐) in
let ℓ = fork(ℓ, 𝜆ℓ . · · · ) in
let ℓ = fork(ℓ, 𝜆ℓ . · · · ) in
· · ·
let 𝑐 = wait(ℓ)

Each client can temporarily take the lock, which allows it to interact with the server. As in [Balzer

et al. 2019], typing ensures that a lock must be released to the same protocol state at which it was

previously acquired, ensuring type safety.

2.3.7 Locks over channels. The preceding example involves putting channels in locks, but we can

also send locks over channels. For instance, one can send an open lock acting like a future/promise

to another thread, so that the other thread gets the obligation to fulfill the promise by storing a

value in the lock.

2.3.8 Encoding session-typed channels. In Section 3.1 we show that we can implement session-typed

channels using our locks.

2.4 Sharing Multiple Locks with Lock Orders
The simple system illustrated above is restricted to sharing only one lock at each fork. We lift this

restriction in Section 6 by introducing lock groups. Lock groups consist of multiple locks, and one is

allowed to share an entire lock group at each fork. In turn, we must introduce another mechanism

to ensure leak and deadlock freedom within a lock group. We do this by imposing a lock order on

the locks of a lock group, and requiring that the locks are acquired in increasing order. A similar

condition takes care that there is no deadlock between several waits or between wait and acquire.
In Section 6.1 we provide examples of the use of lock orders. In particular, we can handle a version

of Dijkstra’s dining philosophers problem with a dynamic number of participants dependent on a

run-time variable 𝑛.

Importantly, deadlock freedom between lock groups is taken care of by the sharing topology, so

one is always free to acquire locks from different lock groups, and do transactions between different

lock groups in that manner. This makes lock groups more compositional than standard global lock

orders that require a global order on the entire system whenever multiple locks are acquired.

3 THE 𝜆lock LANGUAGE
We give a formal description of 𝜆lock’s syntax, type system, and operational semantics. The base of

𝜆lock is a linear 𝜆-calculus, extended with unrestricted types (whose values can be freely duplicated,

dropped, and deallocated) and recursive types:

𝜏 ∈ Type ≜ 0 | 1 | 𝜏 + 𝜏 | 𝜏 × 𝜏 | 𝜏 −◦ 𝜏 | 𝜏 → 𝜏 | Lock⟨𝜏 𝑎
𝑏
⟩ | 𝜇𝑥 .𝜏 | 𝑥

We distinguish linear functions 𝜏1 −◦ 𝜏2 from unrestricted functions 𝜏1 → 𝜏2. Unrestricted

functions can be freely duplicated and discarded, and hence can only capture unrestricted variables.

Linear functions, on the other hand, must be treated linearly, and hence can close over both

linear and unrestricted variables. Rather than distinguishing sums and products into linear and

unrestricted, we consider sums and products to be unrestricted if their components are. Similarly,

we consider recursive types to be unrestricted if their coinductive unfoldings are (see Section 7).

The empty type 0 and unit type 1 are always unrestricted. The lock type Lock⟨𝜏 𝑎
𝑏
⟩ is always linear,

regardless of whether 𝜏 is.
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Γ unr

Γ ⊢ new() : Lock⟨𝜏 1

1
⟩

Γ ⊢ 𝑒 : Lock⟨𝜏 0

0
⟩

Γ ⊢ drop(𝑒) : 1
Γ ⊢ 𝑒 : Lock⟨𝜏 1

0
⟩

Γ ⊢ wait(𝑒) : 𝜏

Γ ≡ Γ1 · Γ2 Γ1 ⊢ 𝑒1 : Lock⟨𝜏 𝑎1+𝑎2
𝑏1+𝑏2 ⟩ Γ2 ⊢ 𝑒2 : Lock⟨𝜏 𝑎2

𝑏2
⟩ −◦ 1

Γ ⊢ fork(𝑒1, 𝑒2) : Lock⟨𝜏 𝑎1
𝑏1
⟩

Γ ⊢ 𝑒 : Lock⟨𝜏 𝑎
0
⟩

Γ ⊢ acquire(𝑒) : Lock⟨𝜏 𝑎
1
⟩ × 𝜏

Γ ≡ Γ1 · Γ2 Γ1 ⊢ 𝑒1 : Lock⟨𝜏 𝑎
1
⟩ Γ2 ⊢ 𝑒2 : 𝜏

Γ ⊢ release(𝑒1, 𝑒2) : Lock⟨𝜏 𝑎
0
⟩

Fig. 1. 𝜆lock’s lock typing rules.

Our language 𝜆lock has the following syntax:

𝑒 ∈ Expr ::= 𝑥 | () | (𝑒, 𝑒) | inL (𝑒) | inR (𝑒) | 𝜆𝑥 . 𝑒 | 𝑒 𝑒 | let (𝑥1, 𝑥2) = 𝑒 in 𝑒 |
match 𝑒 with ⊥ end | match 𝑒 with inL (𝑥1) ⇒ 𝑒1; inR (𝑥2) ⇒ 𝑒2 end |
new() | fork(𝑒, 𝑒) | acquire(𝑒) | release(𝑒, 𝑒) | drop(𝑒) | wait(𝑒)

The typing rules for the lock operations can be found in Figure 1, and the typing rules for the

base language can be found in Figure 2. We use the judgments Γ unr and Γ ≡ Γ1 · Γ2 to handle linear
and unrestricted types: Γ unr means that all types in Γ are unrestricted, and Γ ≡ Γ1 · Γ2 splits up Γ
into Γ1 and Γ2 disjointly for variables of linear type, while allowing variables of unrestricted type

to be shared by both Γ1 and Γ2. We do not include a constructor for recursive functions, because

recursive functions can already be encoded in terms of recursive types, using the Y-combinator.
1

The rules for the operational semantics can be found in Figure 3. We use a small step operational

semantics built up in two layers. The first layer defines values, evaluation contexts, and reductions

for pure expressions. The values are standard for 𝜆-calculus, except for ⟨𝑘⟩, which indicates a

reference/pointer to a lock identified by the number 𝑘 .

The second layer operates on a configuration, which is a collection of threads and locks, each

identified with a natural number. A thread Thread(𝑒) comprises the expression 𝑒 that it executes,

and a lock Lock(refcnt,None | Some(𝑣)) comprises a reference count refcnt (i.e., the number of

client references) and eitherNone, indicating that the lock has been acquired and currently contains
no value, or Some(𝑣), indicating that the lock is currently closed and is holding the value 𝑣 .

The stepping rules for the configuration are as follows, as labeled in Figure 3.

pure Perform a pure reduction in an evaluation context.

new Allocate a new lock at a fresh position 𝑘 , and return a reference ⟨𝑘⟩ to the thread.

fork Fork off a new thread, while duplicating the reference to lock 𝑘 , passing ⟨𝑘⟩ back to the

main thread, as well as to the new child thread.

acquire If the lock currently contains Some(𝑣), then the acquire can proceed, and returns the

value to the thread and puts None in the lock.

release Does the opposite: replaces None in the lock with Some(𝑣), where 𝑣 is the value

provided to the release operation.

drop Deletes a reference to the lock, decrementing its reference count.

wait When the reference count is 0 and there is a Some(𝑣) in the lock, the operation can

proceed and removes the lock from the configuration, while giving the value to the thread.

1
Of course, for efficiency of an implementation one wants direct support for recursion.
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Γ unr

Γ, 𝑥 :𝜏 ⊢ 𝑥 : 𝜏

Γ, 𝑥 :𝜏1 ⊢ 𝑒 : 𝜏2
Γ ⊢ 𝜆𝑥 . 𝑒 : 𝜏1 −◦ 𝜏2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ 𝑒1 : 𝜏1 −◦ 𝜏2 Γ2 ⊢ 𝑒2 : 𝜏1
Γ ⊢ 𝑒1 𝑒2 : 𝜏2

Γ unr Γ, 𝑥 :𝜏1 ⊢ 𝑒 : 𝜏2
Γ ⊢ 𝜆𝑥 . 𝑒 : 𝜏1 → 𝜏2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ2 ⊢ 𝑒2 : 𝜏1
Γ ⊢ 𝑒1 𝑒2 : 𝜏2

Γ, 𝑥 :𝜏1 ⊢ 𝑒 : 𝜏2
Γ ⊢ 𝜆𝑥 . 𝑒 : 𝜏1 −◦ 𝜏2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ 𝑒1 : 𝜏1 −◦ 𝜏2 Γ2 ⊢ 𝑒2 : 𝜏1
Γ ⊢ 𝑒1 𝑒2 : 𝜏2

Γ unr

Γ ⊢ () : 1

Γ ≡ Γ1 · Γ2 Γ1 ⊢ 𝑒1 : 𝜏1 Γ2 ⊢ 𝑒2 : 𝜏2
Γ ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ 𝑒1 : 𝜏1 × 𝜏2 Γ2, 𝑥1 :𝜏1, 𝑥2 :𝜏2 ⊢ 𝑒2 : 𝜏3
Γ ⊢ let 𝑥1, 𝑥2 = 𝑒1 in 𝑒2 : 𝜏3

Γ unr Γ ⊢ 𝑒 : 0
Γ ⊢ match 𝑒 with ⊥ end : 𝜏

Γ ⊢ 𝑒 : 𝜏1
Γ ⊢ inL (𝑒) : 𝜏1 + 𝜏2

Γ ⊢ 𝑒 : 𝜏2
Γ ⊢ inR (𝑒) : 𝜏1 + 𝜏2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ 𝑒 : 𝜏1 + 𝜏2 Γ2, 𝑥1 :𝜏1 ⊢ 𝑒1 : 𝜏 ′ Γ2, 𝑥2 :𝜏2 ⊢ 𝑒2 : 𝜏 ′

Γ ⊢ match 𝑒 with inL (𝑥1) ⇒ 𝑒1; inR (𝑥2) ⇒ 𝑒2 end : 𝜏 ′

Fig. 2. 𝜆lock’s base linear 𝜆-calculus with sums & products and linear & unrestricted functions.

exit When a thread has terminated with a unit value, we remove the thread from the configu-

ration.

frame Closes the set of preceding rules under disjoint union with a remaining configuration.

This allows the preceding rules to take place within a large configuration.

3.1 Encoding Session-Typed Channels
One can implement session-typed channels using our locks. Consider basic session types [Honda

1993; Lindley and Morris 2015; Wadler 2012]:

𝑠 ∈ Session ::= !𝜏 .𝑠 | ?𝜏 .𝑠 | 𝑠 & 𝑠 | 𝑠 ⊕ 𝑠 | End! | End?
We can implement the usual channel operations as follows:

forkC (𝑓 ) ≜ fork(new(), 𝑓 )
sendC (𝑐, 𝑣) ≜ fork(new(), 𝜆𝑐′ . drop(release(𝑐, (𝑐′, 𝑣))))
receiveC (𝑐) ≜ wait(𝑐)

tellL (𝑐) ≜ fork(new(), 𝜆𝑐′ . drop(release(𝑐, inL (𝑐′))))
tellR (𝑐) ≜ fork(new(), 𝜆𝑐′ . drop(release(𝑐, inR (𝑐′))))
ask(𝑐) ≜ wait(𝑐)

closeC (𝑐) ≜ drop(release(𝑐, ()))
waitC (𝑐) ≜ wait(𝑐)
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𝑣 ∈Val ::= () | (𝑣, 𝑣) | inL (𝑣) | inR (𝑣) | 𝜆𝑥. 𝑒 | ⟨𝑘⟩
𝐾 ∈ Ctx ::= □ | (𝐾, 𝑒) | (𝑣, 𝐾) | inL (𝐾) | inR (𝐾) | 𝐾 𝑒 | 𝑣 𝐾 | let 𝑥1, 𝑥2 = 𝐾 in 𝑒

| match 𝐾 with ⊥ end | match 𝐾 with inL (𝑥1) ⇒ 𝑒1; inR (𝑥2) ⇒ 𝑒2 end
| new(𝐾) | fork(𝐾, 𝑒) | fork(𝑣, 𝐾) | acquire(𝐾) | release(𝐾, 𝑒)
| release(𝑣, 𝐾) | drop(𝐾) | wait(𝐾)

match inL (𝑣) with inL (𝑥1) ⇒ 𝑒1 | inR (𝑥2) ⇒ 𝑒2 end {pure 𝑒1 [𝑣/𝑥1]
match inR (𝑣) with inL (𝑥1) ⇒ 𝑒1 | inR (𝑥2) ⇒ 𝑒2 end {pure 𝑒2 [𝑣/𝑥2]

let 𝑥1, 𝑥2 = (𝑣1, 𝑣2) in 𝑒 {pure 𝑒 [𝑣1/𝑥1] [𝑣2/𝑥2]
(𝜆𝑥. 𝑒) 𝑣 {pure 𝑒 [𝑣/𝑥]

𝜌 ∈ Cfg ≜ N fin−⇀ Thread(𝑒) | Lock(refcnt,None | Some(𝑣)){
𝑛 ↦→ Thread(𝐾 [ 𝑒1 ])

} 𝑛
{

{
𝑛 ↦→ Thread(𝐾 [ 𝑒2 ])

}
if 𝑒1 {pure 𝑒2 (pure){

𝑛 ↦→ Thread(𝐾 [ new() ])
} 𝑛
{

{
𝑛 ↦→ Thread(𝐾 [ ⟨𝑘⟩ ])
𝑘 ↦→ Lock(0,None)

}
(new){

𝑛 ↦→ Thread(𝐾 [ fork(⟨𝑘⟩ , 𝑣) ])
𝑘 ↦→ Lock(refcnt, 𝑥)

}
𝑘
{


𝑛 ↦→ Thread(𝐾 [ ⟨𝑘⟩ ])
𝑚 ↦→ Thread(𝑣 ⟨𝑘⟩)
𝑘 ↦→ Lock(1 + refcnt, 𝑥)

 (fork){
𝑛 ↦→ Thread(𝐾 [ acquire(⟨𝑘⟩) ])
𝑘 ↦→ Lock(refcnt, Some(𝑣))

}
𝑘
{

{
𝑛 ↦→ Thread(𝐾 [ (⟨𝑘⟩ , 𝑣) ])
𝑘 ↦→ Lock(refcnt,None)

}
(acquire){

𝑛 ↦→ Thread(𝐾 [ release(⟨𝑘⟩ , 𝑣) ])
𝑘 ↦→ Lock(refcnt,None)

}
𝑘
{

{
𝑛 ↦→ Thread(𝐾 [ ⟨𝑘⟩ ])
𝑘 ↦→ Lock(refcnt, Some(𝑣))

}
(release){

𝑛 ↦→ Thread(𝐾 [ drop(⟨𝑘⟩) ])
𝑘 ↦→ Lock(1 + refcnt, 𝑥)

}
𝑘
{

{
𝑛 ↦→ Thread(𝐾 [ () ])
𝑘 ↦→ Lock(refcnt, 𝑥)

}
(drop){

𝑛 ↦→ Thread(𝐾 [wait(⟨𝑘⟩) ])
𝑘 ↦→ Lock(0, Some(𝑣))

}
𝑘
{

{
𝑛 ↦→ Thread(𝐾 [ 𝑣 ])

}
(wait){

𝑛 ↦→ Thread(())
} 𝑛
{

{}
(exit)

𝜌1 ⊎ 𝜌 ′
𝑖
{ 𝜌2 ⊎ 𝜌 ′ if 𝜌1

𝑖
{ 𝜌2 (⊎ is disjoint union) (frame)

Fig. 3. 𝜆lock’s operational semantics.

Of course, implementing channels this way is inefficient, because a tiny thread is forked every time

we send a message. Thus, it is still worth having native channels, or a compiler that supports a

version of fork that does not actually spawn a new thread, but runs the body immediately (though

care must be taken not to introduce deadlocks). To type these operations, we use the following
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definition of session types in terms of locks, where 𝑠 is the dual of 𝑠:

!𝜏 .𝑠 ≜ Lock⟨𝑠 × 𝜏 0

1
⟩

?𝜏 .𝑠 ≜ Lock⟨𝑠 × 𝜏 1

0
⟩

𝑠1 & 𝑠2 ≜ Lock⟨𝑠1 + 𝑠2 0

1
⟩

𝑠1 ⊕ 𝑠2 ≜ Lock⟨𝑠1 + 𝑠2 1

0
⟩

End! ≜ Lock⟨1 0

1
⟩

End? ≜ Lock⟨1 1

0
⟩

This encoding resembles the encodings of [Dardha et al. 2012, 2017; Kobayashi 2002b]. After

encoding session types this way, we can type check the channel operations with the standard

session typing rules:

forkC : (𝑠 −◦ 1) −◦ 𝑠
closeC : End! −◦ 1
waitC : End? −◦ 1
sendC : !𝜏 .𝑠 × 𝜏 −◦ 𝑠

receiveC : ?𝜏 .𝑠 −◦ 𝑠 × 𝜏
tellL : 𝑠1 & 𝑠2 −◦ 𝑠1
tellR : 𝑠1 & 𝑠2 −◦ 𝑠2
ask : 𝑠1 ⊕ 𝑠2 −◦ 𝑠1 + 𝑠2

Because we can encode these session-typed channels in our deadlock and memory leak free

language, this automatically shows that these session-typed channels are deadlock and memory

leak free. Note that the encoding of session types relies in an essential way on higher-order locks.

4 THE DEADLOCK AND LEAK FREEDOM THEOREMS
Our goal was to make 𝜆lock deadlock and memory leak free. We will now make this more precise.

Firstly, let us look at how the usual notion of type safety can be adapted to a language with blocking

constructs. Type safety for a single threaded language says that if we start with a well-typed

program, then the execution of the program doesn’t get stuck until we terminate with a value. If we

have multiple threads, we could say that this has to hold for every thread, but if we have blocking
constructs this is clearly not true: a thread can temporarily get stuck while blocking. We therefore

modify the notion of type safety to say that each thread can always make progress, except if the

thread is legitimately blocked, i.e., blocked on an operation that is supposed to block, like acquire.
This, of course, is not a strong enough property for our purposes. To rule out deadlocks, we

want to say that even if some threads are blocked, there is always at least one thread that can make

progress. Furthermore, we wish to say that if all threads terminate, then all memory has been

deallocated. Because of the way we have set up our operational semantics, we can formulate this

simply as saying: if the configuration cannot step, then it must be empty.

Let us consider the formal statement of global progress:

Theorem 4.1 (Global progress).

If ∅ ⊢ 𝑒 : 1, and
{
0 ↦→ Thread(𝑒)

}
{∗

𝜌 , then either 𝜌 =
{}

or ∃𝜌 ′ . 𝜌 { 𝜌 ′.

Global progress rules out whole-program deadlocks, and it ensures that all locks have been

deallocated when the program terminates. However, it does not guarantee anything as long as
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there is still a single thread that can step. Thus it only guarantees a weak form of deadlock freedom,

and it only guarantees memory leak freedom when the program terminates, not during execution.

To formulate stronger forms of deadlock and leak freedom, we take an approach similar to the

approaches previously taken for session types [Jacobs et al. 2022a]. Namely, we define the relation

𝑖 waiting𝜌 𝑗 , which says that 𝑖 ∈ dom(𝜌) is waiting for 𝑗 ∈ dom(𝜌). Intuitively, in the graph of

connections between objects in the configuration (i.e., between threads and locks, and between

locks and locks), we give each such connection a waiting direction, so that either 𝑖 waiting𝜌 𝑗 , or
𝑗 waiting𝜌 𝑖 . We define this relation such that if 𝑖 is a thread, and currently about to execute a lock

operation, then 𝑖 waiting𝜌 𝑗 . Furthermore, in all other cases, we say that 𝑗 waiting𝜌 𝑖 , if there is
some reference from 𝑖 to 𝑗 or from 𝑗 to 𝑖 .

Consider our operational semantics stepping rule 𝜌
𝑖
{ 𝜌 ′: this step relation is annotated with a

number 𝑖 , indicating which object in the configuration we consider responsible for the step. The

waiting relation sets up a blame game with respect to this step relation: whenever we ask some

object 𝑖 why the configuration isn’t making progress, 𝑖 should either respond that it can make the

configuration step (i.e., ∃𝜌 ′, 𝜌 𝑖
{ 𝜌 ′), or 𝑖 should blame somebody else, by showing ∃ 𝑗, 𝑖 waiting𝜌 𝑗 .

We can then continue to ask 𝑗 why the configuration isn’t making progress, and so on. Since we

maintain the invariant that the graph of connections is acyclic, it is not possible that the blame

game loops back to the original 𝑖 in a cycle, since then we’d either have a cycle in the reference

structure. Furthermore, the blame game cannot revisit 𝑖 via the same edge that was used to leave 𝑖

either, since then we’d have 𝑖 waiting𝜌 𝑗 and 𝑗 waiting𝜌 𝑖 for some 𝑗 , which is impossible due to

the way we’ve defined waiting𝜌 . Therefore we conclude that the blame game must eventually

terminate at some 𝑗 ∈ dom(𝜌) who shows that the configuration can step.

Importantly, this gives us a stronger theorem, namely that if we start at any 𝑖 ∈ dom(𝜌), there is
some 𝑗 transitively connected to 𝑖 via waiting dependencies, such that 𝑗 can make the configuration

step. This will rule out that a subset of the configuration has been leaked or deadlocked, because in

that case there would be no such transitive path to a thread that can step.

In contrast to Jacobs et al. [2022a], we define these notions more generically, so that we only need

to prove one language specific theorem, fromwhich all the other properties that we wish to establish

follow generically, without further dependence on the particular language under consideration.

Let us now look at this in more formal detail. A language specific piece of information we need

is the relation 𝑒 blocked 𝑘 , which says that expression 𝑒 is blocked on the object identified by 𝑘 .

Note that unlike the waiting relation, this relation does not depend on the configuration; whether

an expression 𝑒 is blocked can be determined from the expression itself:

Definition 4.1. We have 𝑒 blocked 𝑘 if 𝑒 is of the form 𝐾 [ 𝑒0 ] for some evaluation context 𝐾 , and

𝑒0 is one of fork(⟨𝑘⟩ , 𝑣), acquire(⟨𝑘⟩), release(⟨𝑘⟩ , 𝑣), drop(⟨𝑘⟩), wait(⟨𝑘⟩), for some value 𝑣 .

Note that we formally include all the lock operations in the blocked relation, even the ones that

are conventionally not thought of as blocking. The reason we do this is because we consider the

locks to be responsible for the step operations involving the lock, and not the thread, as can be

seen from the annotations 𝑖 on the step relation 𝜌
𝑖
{ 𝜌 ′ in the operational semantics (Figure 3).

This streamlines the formal statements because they become more uniform.

Secondly, we need to be able to determine all the outgoing references for an object in the

configuration:

Definition 4.2. We have the function refs𝜌 (𝑖) ⊆ dom(𝜌), which gives the set of all references ⟨𝑘⟩
stored inside 𝜌 (𝑖). We omit the formal definition here, as this can be defined using a straightforward

recursion on expressions and values.
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This allows us to define the waiting relation:

Definition 4.3. We have 𝑖 waiting𝜌 𝑗 if either:

(1) 𝜌 (𝑖) = Thread(𝑒) and 𝑒 blocked 𝑗 .
(2) 𝑖 ∈ refs𝜌 ( 𝑗) and not 𝜌 ( 𝑗) = Thread(𝑒) with 𝑒 blocked 𝑖 .
That is, threads are waiting for the objects they are blocked on, and if an object has an incoming

reference and this reference is not from a thread blocked on that object, then the object is considered

to be waiting for the source of the incoming reference. Specifically, if a thread has a reference to a

lock, and the thread is not currently about to execute an operation with this lock, then the lock is

said to be waiting for the thread. Similarly, if a lock holds a reference to a lock, then the second

lock is considered to be waiting for the first.

Using the waiting relation notion, we can formally define what a partial deadlock/leak is. Intu-

itively, a partial deadlock is a subset of the objects in the configuration, none of which can step,

such that if an object in the deadlock is waiting, then it must be waiting for another object in the

deadlock.

Definition 4.4 (Partial deadlock/leak). Given a configuration 𝜌 , a non-empty subset 𝑆 ⊆ dom(𝜌)
is in a partial deadlock/leak if these two conditions hold:

(1) No 𝑖 ∈ 𝑆 can step, i.e., for all 𝑖 ∈ 𝑆 , ¬∃𝜌 ′ . 𝜌 𝑖
{ 𝜌 ′

(2) If 𝑖 ∈ 𝑆 and 𝑖 waiting𝜌 𝑗 then 𝑗 ∈ 𝑆
This notion also incorporates memory leaks: if there is some lock that is not referenced by a

thread or other lock, then the singleton set of that lock is a partial deadlock/leak. Furthermore, if

we have a set of locks that all reference only each other circularly, then this is considered to be a

partial deadlock/leak. Similarly, a single thread that is not synchronizing on a lock, is considered to

be in a singleton deadlock if it cannot step.

Definition 4.5 (Partial deadlock/leak freedom). A configuration 𝜌 is deadlock/leak free if no

𝑆 ⊆ dom(𝜌) is in a partial deadlock/leak.

We can reformulate this to look more like the standard notion of memory leak freedom, namely

reachability:

Definition 4.6 (Reachability). We inductively define the threads and locks that are reachable in 𝜌 :
𝑗0 ∈ 𝑁 is reachable in 𝜌 if there is some sequence 𝑗1, 𝑗2, ..., 𝑗𝑘 (with 𝑘 ≥ 0) such that 𝑗0 waiting𝜌 𝑗1,

and 𝑗1 waiting𝜌 𝑗2, ..., and 𝑗𝑘−1 waiting𝜌 𝑗𝑘 , and finally 𝑗𝑘 can step in 𝜌 , i.e., ∃𝜌 ′ . 𝜌
𝑗𝑘
{ 𝜌 ′.

Intuitively, an element of the configuration is reachable if it can step, or if it has a transitive

waiting dependency on some other element that can step. This notion is stronger than the usual

notion of reachability, which considers objects to be reachable even if they are only reachable from

threads that are blocked.

Definition 4.7 (Full reachability). A configuration 𝜌 is fully reachable if all 𝑖 ∈ dom(𝜌) are
reachable in 𝜌 .

As in [Jacobs et al. 2022a], our strengthened formulations of deadlock freedom and full reachability

are equivalent for 𝜆lock:

Theorem 4.2. A configuration 𝜌 is deadlock/leak free if and only if it is fully reachable.

In contrast to [Jacobs et al. 2022a], we have carefully set up our definitions so that this theorem

holds fully generically, i.e., independent of any language specific properties.

These notions also imply global progress and type safety:
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Definition 4.8. A configuration 𝜌 satisfies global progress if 𝜌 = ∅ or ∃𝜌 ′, 𝑖 . 𝜌 𝑖
{ 𝜌 ′.

Definition 4.9. A configuration 𝜌 is safe if for all 𝑖 ∈ dom(𝜌), ∃𝜌 ′, 𝑖 . 𝜌 𝑖
{ 𝜌 ′, or ∃ 𝑗 . 𝑖 waiting𝜌 𝑗 .

That is, global progress holds if there is any element of the configuration that can step, and safety

holds if all elements of the configuration can either step, or are legally blocked (i.e., waiting for

someone else).

Theorem 4.3. If a configuration 𝜌 is fully reachable, then 𝜌 has the progress and safety properties.

We thus only need to prove one language specific theorem, namely that all configurations that

arise from well-typed programs are fully reachable:

Theorem 4.4. If ∅ ⊢ 𝑒 : 1 and
{
0 ↦→ Thread(𝑒)

}
{∗

𝜌 ′, then 𝜌 ′ is fully reachable.

Once we have this theorem, the other theorems follow.

In the next section (Section 5) we give a high-level overview of how the theorem is proved.

5 AN INTUITIVE DESCRIPTION OF THE PROOFS
In this section we give a high-level overview of the proof of Theorem 4.4. We keep the discussion

high-level and intuitive because the full details are in the mechanized proofs (Section 7).

Recall that Theorem 4.4 says that if we start with a well-typed program, then every object in the

configuration always remains reachable (Definition 4.6). In order to show this, we will structure the

proof in the style of progress and preservation: we first define an invariant on the configuration,

showing that the invariant is preserved by the operational semantics (analogous to preservation),

and then show that configurations that satisfy the invariant are fully reachable (analogous to

progress). Thus, our first task is to come up with a suitable invariant.

As we have seen in Section 2, our invariant must ensure that the sharing topology in the

configuration is acyclic. That is, if one considers the graph where the threads and locks are vertices,

and there is an (undirected) edge between two vertices if there is a reference between them (in

either direction), then this graph shall remain acyclic.

Another aspect of our invariant is well-typedness: we must ensure that the expressions of every

thread, and the values in every lock, are well-typed. Furthermore, if there are lock references ⟨𝑘⟩ in
expressions or values, then the type assigned to these must be consistent with the type of values

actually stored in the lock.

However, the type of lock references is, in general, ⟨𝑘⟩ : Lock⟨𝜏 𝑎
𝑏
⟩. The invariant must also

account for the consistency of the 𝑎 and 𝑏 of the different references to the same lock. We require

the following conditions for a lock

{
𝑘 ↦→ Lock(refcnt, 𝑣)

}
in the configuration:

• Out of all the references ⟨𝑘⟩ appearing in the configuration, precisely one has 𝑎 = 1.

• Out of all the references ⟨𝑘⟩ appearing in the configuration, at most one has 𝑏 = 1. Further-

more, if 𝑣 = Some(𝑣 ′), we must have 𝑏 = 0 for all references, and if 𝑣 = None, we must have

precisely one reference with 𝑏 = 1.

• The number of references with 𝑎 = 0 must be consistent with refcnt.
We capture the acyclicity condition, the well-typedness condition, and the lock conditions in a

predicate inv(𝜌) on configurations, which states that the configuration 𝜌 satisfies these conditions.

Our invariant is that this predicate holds throughout execution. Formally, we have to show:

Theorem 5.1 (preservation). If 𝜌
𝑖
{ 𝜌 ′ then inv(𝜌) =⇒ inv(𝜌 ′)

The proof of this theorem involves careful mathematical reasoning about the sharing topology:

we must show that each lock operation, although it may modify the structure of the graph, ensures
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that if the graph of 𝜌 was acyclic, then the graph of 𝜌 ′ is also acyclic, provided the program we are

executing is well-typed in the linear type system.

Secondly, we must ensure that all operations leave all the expressions and values in the configu-

ration well-typed, and maintain the correctness conditions for the references to each lock.

Having done this, it remains to show that if a configuration satisfies our invariant, then every

object in the configuration is reachable:

Theorem 5.2 (reachability). If inv(𝜌), then 𝜌 is fully reachable.

Recall Definition 4.6 of reachability: an object 𝑗0 in the configuration is reachable, if there is some

sequence 𝑗1, 𝑗2, ..., 𝑗𝑘 (with𝑘 ≥ 0) such that 𝑗0 waiting𝜌 𝑗1, and 𝑗1 waiting𝜌 𝑗2, ..., and 𝑗𝑘−1 waiting𝜌 𝑗𝑘 ,

and finally 𝑗𝑘 can step in 𝜌 , i.e., ∃𝜌 ′ . 𝜌
𝑗𝑘
{ 𝜌 ′. Thus, proving Theorem 5.2 amounts to constructing

such a sequence and showing that the final element in the sequence can step. To construct this

sequence, we must rely on the acyclicity of the sharing topology in an essential way.

We do this by formulating our strategy for constructing such a sequence with respect to that

graph: we start at the vertex 𝑗0, check whether 𝑗0 can itself step, and if not, show that there must

exist some 𝑗1 such that 𝑗0 waiting𝜌 𝑗1. We then repeat this process iteratively.

There is a danger that this process does not terminate (i.e., goes in a cycle, since the configuration

is finite), but by being careful we can avoid this danger:

(1) We make sure, that if we step from 𝑗𝑖 to 𝑗𝑖+1, that there is an edge between 𝑗𝑖 and 𝑗𝑖+1.
(2) We make sure that if we just stepped from 𝑗𝑖 to 𝑗𝑖+1, we will not immediately step back.

These two conditions together ensure that our stepping process is well-founded: if we step along

edges in an acyclic graph and never turn around and step back, then we must eventually arrive at

some vertex with only one adjacent edge, from which we just came, and we are then forced to stop.

Thus, in order to prove Theorem 5.2, it is sufficient to come up with a stepping strategy, and

show that it satisfies these two conditions. This strategy, roughly speaking, works as follows:

• If we are currently at a thread 𝑖 with 𝜌 (𝑖) = Thread(𝑒), then by well-typedness of the

expression 𝑒 we can show that the thread can either take a step, or it is currently attempting

to execute a lock operation on some lock ⟨𝑘⟩. In the former case, we are done. In the latter

case, we have 𝑖 waiting𝜌 𝑘 , so we step to vertex 𝑘 , and continue building our sequence of

transitive waiting dependencies from there.

• If we are currently at a lock 𝑘 with 𝜌 (𝑘) = Lock(refcnt, 𝑣), we can show, from the invariant

we maintain about locks, that we are in one of the following situations:

(1) We have 𝑣 = None and there is an incoming reference ⟨𝑘⟩ from some 𝑗 ∈ dom(𝜌) with
⟨𝑘⟩ : Lock⟨𝜏 𝑎

1
⟩, i.e., an opened reference.

(2) We have 𝑣 = Some(𝑣 ′) and refcnt = 0, and there an incoming reference ⟨𝑘⟩ from some

𝑗 ∈ dom(𝜌) with ⟨𝑘⟩ : Lock⟨𝜏 1

0
⟩, i.e., a closed owner reference.

(3) We have 𝑣 = Some(𝑣 ′) and refcnt ≠ 0, and there an incoming reference ⟨𝑘⟩ from some

𝑗 ∈ dom(𝜌) with ⟨𝑘⟩ : Lock⟨𝜏 0

0
⟩, i.e., a closed client reference.

In each case, if 𝑗 is a lock, then we are immediately done because we can show 𝑖 waiting𝜌 𝑗
and step to 𝑗 . If 𝑗 is a thread, then we have two cases:

– The thread is waiting for us, i.e., trying to do a lock operation with ⟨𝑘⟩. In this case, the

above information guarantees that this lock operation can proceed:

(1) In the first case with 𝑣 = None, we know that the only lock operations that are allowed

by the type ⟨𝑘⟩ : Lock⟨𝜏 𝑎
1
⟩ are release and fork, both of which can proceed. In particular,

since the lock is open, the wait operation, which could block, is not permitted.
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(2) In the second case with 𝑣 = Some(𝑣 ′) and refcnt = 0, we have a closed owner reference,

so the only potentially blocking operation that is permitted is wait, which can proceed

since refcnt = 0.

(3) In the third case with 𝑣 = Some(𝑣 ′) and refcnt ≠ 0, we have a closed client reference, so

none of the operations permitted are blocking.

– The thread is not waiting for us, i.e., we are waiting for the thread. So we step to the thread,

and continue building our sequence of transitive waiting dependencies from there.

This concludes the sketch of the proofs of Theorem 5.1 and Theorem 5.2, which together can

be used to prove our main Theorem 4.4, from which all the other theorems in Section 4 follow.

Although the description of the proofs here omit many details, particularly with respect to the

preservation of acyclicity of the sharing topology, the description is nevertheless faithful to how

the mechanized Coq proof is done.

6 THE 𝜆lock++ LANGUAGE: SHARING MULTIPLE LOCKSWITH LOCK GROUPS
The language 𝜆lock we have seen so far only allows us to share one lock with a child thread when

we fork. To alleviate this restriction we now develop 𝜆lock++, which allows us to share more than

one lock with a child thread. This allows us to handle locally cyclic connections.

The mechanism by which 𝜆lock++ allows this is lock groups. The locks of 𝜆lock store one pair

(refcnt,None | Some(𝑣)) of a reference count and an optional value, whereas the lock groups of

𝜆lock++ store a collection of such pairs. Whereas the type of locks in 𝜆lock is Lock⟨𝜏 𝑎
𝑏
⟩, the type of a

lock group in 𝜆lock++ is:

LockG⟨𝜏1𝑎1𝑏1 , . . . , 𝜏𝑛
𝑎𝑛
𝑏𝑛
⟩

That is, we generalize the data within the brackets from one item to 𝑛 items, but each item still

consists of a triple 𝜏𝑎
𝑏
where 𝜏 indicates the type of that lock, 𝑎 indicates whether we are the owner

of that lock, and 𝑏 indicates whether we have currently acquired that lock.

We are allowed to freely create and destroy empty lock groups:

newgroupG : 1 → LockG⟨⟩
dropgroupG : LockG⟨⟩ → 1

Once we have a lock group, we are able to create a new lock in the lock group, choosing at which

position 𝑖 to place it in the list:

newlockG [𝑖] : LockG⟨®𝑔1, ®𝑔2⟩ → LockG⟨®𝑔1, 𝜏11, ®𝑔2⟩ where 𝑖 = | ®𝑔1 |
Similarly, we are able to drop a lock from the group, provided it is a client reference:

droplockG [𝑖] : LockG⟨®𝑔1, 𝜏00, ®𝑔2⟩ → LockG⟨®𝑔1, ®𝑔2⟩ where 𝑖 = | ®𝑔1 |
The more interesting operation is acquire, which acquires one of the locks in the group:

acquireG [𝑖] : LockG⟨®𝑔1, 𝜏𝑎0 , ®𝑔2⟩ → LockG⟨®𝑔1, 𝜏𝑎1 , ®𝑔2⟩ × 𝜏 where 𝑖 = | ®𝑔1 | and closed ®𝑔2
Acquire requires that we obey the lock order, that is, we cannot acquire a lock in the group if

there is an opened lock to its right in the type-level list. This condition is necessary to prevent

acquire-acquire deadlocks. The rule for release is as folows:

releaseG [𝑖] : LockG⟨®𝑔1, 𝜏𝑎1 , ®𝑔2⟩ × 𝜏 → LockG⟨®𝑔1, 𝜏𝑎0 , ®𝑔2⟩ where 𝑖 = | ®𝑔1 |
The condition for wait has to be even more stringent than the rule for acquire:

waitG [𝑖] : LockG⟨®𝑔1, 𝜏10, ®𝑔2⟩ → LockG⟨®𝑔1, ®𝑔2⟩ × 𝜏 where closed ®𝑔1, ®𝑔2, owners ®𝑔2 and 𝑖 = | ®𝑔1 |
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Γ unr

Γ ⊢ newgroupG () : LockG⟨⟩
Γ ⊢ 𝑒 : LockG⟨⟩

Γ ⊢ dropgroupG (𝑒) : 1

Γ ⊢ 𝑒 : LockG⟨®𝑔1, ®𝑔2⟩ 𝑖 = | ®𝑔1 |
Γ ⊢ newlockG [𝑖] (𝑒) : LockG⟨®𝑔1, 𝜏11, ®𝑔2⟩

Γ ⊢ 𝑒 : LockG⟨®𝑔1, 𝜏00, ®𝑔2⟩ 𝑖 = | ®𝑔1 |
Γ ⊢ droplockG [𝑖] (𝑒) : LockG⟨®𝑔1, ®𝑔2⟩

Γ ⊢ 𝑒 : LockG⟨®𝑔1, 𝜏10, ®𝑔2⟩ closed ®𝑔1, ®𝑔2, owners ®𝑔2 𝑖 = | ®𝑔1 |
Γ ⊢ waitG [𝑖] (𝑒) : LockG⟨®𝑔1, ®𝑔2⟩ × 𝜏

Γ ≡ Γ1 · Γ2 Γ1 ⊢ 𝑒1 : LockG⟨®𝑔⟩ Γ2 ⊢ 𝑒2 : LockG⟨®𝑔1⟩ −◦ 1 split ®𝑔 into ®𝑔1, ®𝑔2
Γ ⊢ forkG (𝑒1, 𝑒2) : LockG⟨®𝑔2⟩

Γ ⊢ 𝑒 : LockG⟨®𝑔1, 𝜏𝑎0 , ®𝑔2⟩ 𝑖 = | ®𝑔1 | closed ®𝑔2
Γ ⊢ acquireG [𝑖] (𝑒) : LockG⟨®𝑔1, 𝜏𝑎1 , ®𝑔2⟩ × 𝜏

Γ ≡ Γ1 · Γ2 Γ1 ⊢ 𝑒1 : LockG⟨®𝑔1, 𝜏𝑎1 , ®𝑔2⟩ Γ2 ⊢ 𝑒2 : 𝜏 𝑖 = | ®𝑔1 |
Γ ⊢ releaseG [𝑖] (𝑒1, 𝑒2) : LockG⟨®𝑔1, 𝜏𝑎0 , ®𝑔2⟩

Fig. 4. 𝜆lock++’s lock group typing rules.

The condition says that we can only wait if all locks are closed (to prevent acquire-wait deadlocks
on different locks in the group), and we must obey the lock order with respect to the owners, that is,

we cannot wait if there is a client to the right (to prevent wait-wait deadlocks on different locks).

The rule for fork allows us to share an entire lock group with the child thread:

forkG : LockG⟨®𝑔⟩ × (LockG⟨®𝑔1⟩ −◦ 1) → LockG⟨®𝑔2⟩ where split ®𝑔 into ®𝑔1, ®𝑔2
The relation split ®𝑔 into ®𝑔1, ®𝑔2 specifies that locks are split as in 𝜆lock, but elementwise for each lock:

𝜏
𝑎1+𝑎2
𝑏1+𝑏2 ∈ ®𝑔 is split into

{
𝜏
𝑎1
𝑏1

∈ ®𝑔1
𝜏
𝑎2
𝑏2

∈ ®𝑔2
The rules for 𝜆lock++ are summarized in Figure 4. In summary, 𝜆lock++ organises locks into lock

groups, which can be grown and shrunk dynamically.

6.1 Examples of Using Lock Orders
The key improvement over 𝜆lock is that 𝜆lock++’s forkG allows us to share an entire lock group, with

potentially multiple locks:

let ℓ = newgroupG () in
let ℓ = newlockG [0] (ℓ) in
let ℓ = newlockG [1] (ℓ) in
let ℓ = forkG (ℓ, 𝜆ℓ . · · · ) in · · ·

In a 𝜆lock++ version of the bank example (Section 2.3.4), this would allow us to have multiple bank

threads that each do transactions over multiple locks, guaranteeing deadlock freedom because the

type system ensures that the banks acquire the locks according to the lock order.
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Dining philosophers. We can use lock groups for a dynamic version of Dijkstra’s dining philosophers

(a.k.a., a unbounded process network [Giachino et al. 2014; Kobayashi and Laneve 2017]), where

the number 𝑛 of philosophers is chosen dynamically.

dine : LockG⟨int𝑎1
0
, int𝑎2

0
⟩ −◦ 1

dine(ℓ) ≜
let ℓ, 𝑥 = acquireG [0] (ℓ) in
let ℓ,𝑦 = acquireG [1] (ℓ) in
let ℓ = releaseG [0] (ℓ,𝑦) in
let ℓ = releaseG [1] (ℓ, 𝑥) in dine(ℓ)

phil : int × LockG⟨int𝑎1
0
, int𝑎2

0
⟩ −◦ 1

phil(0, ℓ) ≜ dine(ℓ)
phil(𝑛 + 1, ℓ) ≜

let ℓ = releaseG [2] (newlockG [2] (ℓ), 42) in
let ℓ = forkG (ℓ, 𝜆ℓ . dine(droplockG [0] (ℓ))) in
phil(𝑛, droplockG [1] (ℓ))

We can start the philosophers by running the following code:

let ℓ = newgroupG () in
let ℓ = releaseG [0] (newlockG [0] (ℓ), 42) in
let ℓ = releaseG [1] (newlockG [1] (ℓ), 42) in
let ℓ = forkG (ℓ, 𝜆ℓ . dine(ℓ)) in phil(𝑛, ℓ)

The code sets up a ring of forks (the locks) and philosophers (the dining threads) between them.

It helps to think of the ring as a long line of forks, which is closed by making a philosopher dine

with the first and last forks in the line. Intuitively, the phil function takes a lock group with two

forks: the very first fork in the line, and the last fork in the line so far. The function then creates

a new fork at the end of the line, and makes a new philosopher dine with the last two forks. We

then forget about the penultimate fork, and make a recursive call. At the end of the recursion, we

close the loop by making a philosopher dine with the very first fork and the last. To initialize this

process, we create the first two forks in the line. We make a philosopher dine with these forks, and

use phil to make the line and close the loop. Note that there will be 𝑛 + 2 locks in the lock group

overall, but the local view of any reference has at most 3 locks visible at any time.

Growing the table. To illustrate the dynamic nature of lock groups and their lock orders, we can

modify the above code to dynamically grow the number of philosophers at the circular table. To do

so, replace the recursive call of dine(ℓ) with phil(2, ℓ), making dine and phil mutually recursive.

Now, after a philosopher is done dining (i.e., acquring and releasing their two locks), the philosopher
replaces itself with 3 dining philosophers, thus growing the circle by 2.

Growing the table, fractally. To further illustrate the dynamic nature, consider replacing the recursive

call dine(ℓ) with the following code:

phil(2, forkG (ℓ, 𝜆ℓ . phil(2, ℓ)))

After dining, the philosopher replaces itself with 6 philosophers, arranged in two parallel lines.

The leftmost philosophers in the two lines both use the left-hand lock of the original philosopher,
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and the rightmost philosophers in the two lines both use the right-hand lock of the original

philosopher.

Of course, each of these philosophers is running the same code, and after dining they will in

turn replace themselves with such parallel lines, according to the following substitution:

=⇒

In this picture, the squares are forks (locks) and the circles are philosophers (threads). Some forks

are now accessed by more than 2 philosophers, and the number of philosophers accessing a fork

can grow dynamically. Which philosopher dines and splits is non-deterministic, and thus the initial

table of 42 grows non-deterministically in fractal and intricately interconnected circular patterns.

Nevertheless, the type system of 𝜆lock++ guarantees deadlock freedom by construction.

Multiple lock groups. Note that so far we have used only a single lock group. The expressiveness

of 𝜆lock for multiple locks based on the sharing topology is still available for 𝜆lock++, but now for

multiple lock groups. The reader may wonder how the expressivity of pure lock orders with a single

lock group of 𝜆lock++ compares with the expressivity of the pure sharing topology of 𝜆lock. The two

mechanisms are orthogonal, and one is not strictly more powerful than the other, because two

locks in the same lock group always need to be locked in the given order, whereas two independent

locks can be locked in any order.

6.2 References to Lock Groups
Operationally, 𝜆lock++ works precisely like 𝜆lock, except that each lock group now stores a collection

of locks, each of which is identified by an id (a natural number). Each reference to a lock group may

only have partial knowledge of which locks are present in the group, because new locks may have

been added concurrently by other threads that hold a reference to the same lock group. However,

note that the operations newlockG [𝑖], droplockG [𝑖], acquireG [𝑖] and releaseG [𝑖] refer to a lock

by index 𝑖 , which is the index of the local view of the lock group. Therefore, each reference to a

lock group now consists not just of ⟨𝑘⟩, but in fact of ⟨𝑘 | 𝑖0, 𝑖1, . . . , 𝑖𝑛⟩, where 𝑘 identifies the lock

group, and 𝑖0, 𝑖1, . . . , 𝑖𝑛 identifies which locks in the lock group this reference knows about. Thus,

when we have ⟨𝑘 | 𝑖0, 𝑖1, . . . , 𝑖𝑛⟩ : LockG⟨®𝑔⟩, we have | ®𝑔| = 𝑛.

6.3 The Invariant for Lock Groups
The invariant for lock groups is very similar to the one for locks. The sharing topology does not

distinguish between the individual locks in a group, but treats them as an atomic whole. Thus,

we may have edges between threads and lock groups, and between lock groups and lock groups,

and this graph must be acyclic. The local invariant for a lock group with respect to the types

⟨𝑘 | 𝑖0, 𝑖1, . . . , 𝑖𝑛⟩ : LockG⟨®𝑔⟩ of all the references to the lock group, is also similar. Elementwise,

we insist the same as for single locks: each lock must have precisely one owning reference, and

the reference count of each lock must agree with the number of client references. Furthermore,

whether the lock stores None | Some(𝑣) must agree with the existence of an open reference. In

other words, the invariant for a lock group is the same as for single locks, but elementwise.

The key difference is that for lock groups, we insist that the order of the lists 𝐼 = 𝑖0, 𝑖1, . . . , 𝑖𝑛 of

the lock references of the various references must agree. That is, there is some list 𝐼all such that the

𝐼 of every client reference ⟨𝑘 | 𝐼 ⟩ to the lock group is a subsequence of it.
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This invariant is preserved by all the operations:

• Inserting a new lock into the group inserts it into 𝐼all as well.

• Deleting a lock using waitG [𝑖] deletes it from 𝐼all as well.

• Dropping a client reference to a lock has no effect on 𝐼all; we only need to ajust the subsequence

witness of that reference.

• Acquiring and releasing a lock has no effect on 𝐼all.

• Forking a lock group has no effect on 𝐼all, since the two newly split references have the locks

in the same order as the original reference.

In summary, the references to the lock group have a partial but consistent view of the lock order.

6.4 Reachability for Lock Groups
We wish to generalize the theorems of Section 4 to 𝜆lock++. This turns out to be very easy: only

the definition of blocked (Definition 4.1) depended on the details of 𝜆lock. We adjust it so that a

thread is considered blocked on a lock group if it is trying to perform one of 𝜆lock++’s lock group

operations on it.

In Section 5 we have seen that the difficult case of the reachability proof is to establish reachability

of the locks, or in our case now, a lock group. The reachability proof for a lock comes down to

showing that it is impossible that every reference to the lock is blocked on it. Let us thus see why

this also holds for lock groups. Suppose that there is some reference to the lock group. If this

reference is doing anything other than acquire or wait on this lock group, then it is not blocked,

and hence we’re done. If it is blocked, we have the following two cases:

The case of acquire. Consider the case when this reference is doing an acquire of some lock 𝑖 in

the group. If this acquire can’t proceed, the lock must have already been acquired, via some other

reference. Consider, now, the thread holding that reference (if it is held by a lock, we are also

immediately done). If that thread is not blocked on this lock group, we’re done. If it is blocked on

this lock group, it could be doing an acquire, or a wait. In fact, it is not possible that the thread

is doing a wait operation, because the typing rule of wait says that all the locks must be closed,
and if it has acquired a lock in the group, this condition is violated. Hence, the thread must be

doing an acquire of some lock 𝑗 in the group. It seems that we’re now back to where we started.

However, due to the typing rule of acquire, the lock 𝑗 must be higher in the lock order than lock 𝑖 .

Thus, we have made progress, in the sense that we have gone up in the lock order. Hence, if we

keep repeating this reasoning, we go up and up in the lock order, until we’re at the end, and then

the thread can’t be doing any acquire (formally, we phrase this using induction). In summary, if

some thread is doing an acquire, then there must be some reference into the lock group that is not

blocked on the lock group, and we’re done.

The case of wait. Now consider the case when the reference is doing a wait on some lock 𝑖 in the

group. If this wait cannot proceed, then the refcount of that lock must be nonzero, so there must

also be some client reference to 𝑖 . Consider, now, the thread holding that reference (if it is held

by a lock, we are also immediately done). If that thread is not blocked on this lock group, we’re

done. If it is blocked on this lock group, it could be doing an acquire, or a wait. If it’s doing an

acquire, we’re done, by the preceding paragraph. Hence, suppose that the thread is doing a wait on

some lock 𝑗 in the group. It seems that we’re now back to where we started. However, due to the

typing rule of wait, the lock 𝑗 must be higher in the lock order than lock 𝑖 . Hence, by repeating this

reasoning, we go up in the lock order, and eventually we’re done. In summary, if some thread is

doing a wait, then there must be some reference into the lock group that is not blocked on the lock

group, and we’re done.
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7 MECHANIZED PROOFS
All of our theorems (Theorem 4.2, Theorem 4.3, Theorem 4.4, Theorem 5.1, and Theorem 5.2) have

been mechanized in the Coq proof assistant [Jacobs and Balzer 2022], for both 𝜆lock and 𝜆lock++. The

mechanization is structured as follows:

• The 𝜆lock/𝜆lock++ language definition: expressions, static type system (with unrestricted and

recursive types), and operational semantics.

• The configuration invariant, stating that the configuration remains well typed, that the

sharing topology is acyclic, and that the lock invariants hold for every lock / lock group.

• Proof that the invariant is preserved by the operational semantics (Theorem 5.1).

• Proof that configurations satifsying the invariant are fully reachable (Theorem 5.2).

• Proofs that full-reachability is equivalent to deadlock/leak freedom, and that they imply type

safety and global progress (Theorem 4.2, Theorem 4.3).

In order to handle recursive types, we use the coinductive method of Gay et al. [2020].

The mechanization uses a graph library to reason about the graph underlying the sharing

topology [Jacobs et al. 2022a] and depends on Iris, mainly for the Iris proof mode [Jung et al. 2018b,

2015; Krebbers et al. 2017], as well as on the stdpp extended standard library for Coq [Coq-std++

Team 2021].

8 RELATEDWORK
Related work on deadlock freedom spans both shared memory and message-passing concurrency

as well as type systems and program logics. Related work on memory leak freedom seems to be

confined to the purely linear setting. While memory safety has been studied both in research

[Grossman et al. 2002; Tofte and Talpin 1997] and in practice, with Rust as the most prominent

example [Jung et al. 2018a], memory safety does not entail memory leak freedom.

Session types. Conceptually, our work is most closely related to the family of binary session

types [Caires et al. 2016; Fowler et al. 2021, 2019; Jacobs et al. 2022a; Kokke et al. 2019; Lindley

and Morris 2015, 2016, 2017; Toninho 2015; Toninho et al. 2013] that build on the Curry-Howard

correspondence between linear logic and the session-typed 𝜋-calculus [Caires and Pfenning 2010;

Wadler 2012]. Like these systems, our type system uses linearity to restrict the propagation of

references to rule out circular waiting dependencies among a program’s run-time objects. Our fork
construct, moreover, resembles process spawning (a.k.a., cut) in that it connects a parent and a

child thread with exactly one lock (group). However, our fork construct differs in that it allows a

parent thread to share the same lock (group) among repeatedly forked off children (e.g., example in

Section 2.3.3), permitting aliases to a lock (group) to exist and threads with such aliases to affect

each other. We remark that the linear exponential, supported by some linear session types, has a

copying and not a sharing semantics.

Traditional session types, both binary [Honda 1993; Honda et al. 1998] and multiparty [Honda

et al. 2008], suffer from deadlock. Carbone and Debois [2010] were the first to explore the benefits of

acyclicity of the underlying communication topology for deadlock freedom. These ideas, combined

with insights gained from the Curry-Howard correspondence between linear logic and the session-

typed 𝜋-calculus [Caires and Pfenning 2010; Wadler 2012], gave rise to a series of work to establish

deadlock freedom for multiparty session types [Carbone et al. 2016, 2015, 2017; Castro-Perez et al.

2021; Jacobs et al. 2022b]. While our notion of sharing topology draws inspiration from these works,

our type system offers unrestricted sharing through locks.
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Recently, Qian et al. [2021] and Rocha and Caires [2021] have inhaled the linear exponential a

slightly different semantics. In particular, Qian et al. [2021] observe that the established interpreta-

tion of the linear exponential [Wadler 2012] fails to faithfully encode client-server interactions,

where clients are served in a non-deterministic fashion. The authors complement the linear ex-

ponential with a coexponential to fill this gap. Like acquires in our language, Qian et al. [2021]’s

coexponential is the source of non-determinism. However, the coexponential still has a copying

semantics, ruling out various sharing scenarios, such as dining philosophers (see Section 6.1).

Closer to our base calculus 𝜆lock is Rocha and Caires [2021]’s PaT language with reference cells.

PaT’s reference cells have constructs for reading a cell’s contents, updating it, and locking it, while

remaining deadlock-free. To account for the non-determinism resulting from an update, the authors

introduce non-deterministic sums from differential linear logic [Ehrhard 2018; Ehrhard and Regnier

2006]. A similarity between PaT and 𝜆lock is the reliance on acyclicity for deadlock freedom not

just for sessions, but also for reference cells. PaT ensures acyclicity with co-contraction rules

for its share construct, which serves a similar purpose as 𝜆lock’s fork, with the difference that

PaT is situated in a 𝜋-calculus, rather than a 𝜆-calculus like 𝜆lock. Like fork, the typing rules of

share distribute the lock’s open/closed state over parallel processes, ensuring that only a single

process is interacting with an opened lock. In contrast to PaT’s reference cells, which can only store

unrestricted values (i.e., values that can be freely copied and discarded, such as natural numbers),

𝜆lock’s locks can store arbitrary linear values, including values representing non-affine obligations.

Locking and unlocking transfers full ownership over the contents, including obligations, such as

the obligation to close a lock or send a message on a channel. In terms of our invariants (Section 2,

principles 1-5, and Section 5), these obligations emerge as edges between two locks as well as the

need to introduce the owner/client distinction in addition to the open/closed distinction. Moreover,

our extended language 𝜆lock++ supports cyclic sharing topologies, which are beyond the reach of

reference cells.

Among the extensions of linear logic session types with non-determinism and notions of sharing,

manifest sharing [Balzer and Pfenning 2017; Balzer et al. 2018, 2019] is the work closest to ours.

Manifest sharing introduces an adjoint formulation of linear and shared session types, with the

latter resembling our locks, which can be freely shared and must be communicated with by entering

a critical section. Mutual exclusion is enforced by adjoint modalities, with an acquire and release

semantics. While the original system [Balzer and Pfenning 2017; Balzer et al. 2018] can suffer from

deadlocks, Balzer et al. [2019] augment manifest sharing with partial orders to rule out deadlocks.

In contrast to our locks, shared processes in [Balzer et al. 2019] cannot store any linear resources.

Moreover, while Balzer et al. [2019]’s system supports order-polymorphic processes, ensuring

compositionality, local orders must comply with a global order at run-time, whereas lock group

orders in 𝜆lock++ are independent of each other. Lastly, Balzer et al. [2019]’s system does not support

unbounded process networks (see Section 6.1), whereas 𝜆lock++ does.

Usages and obligations. The addition of channel usage information to types in a concurrent,

message-passing setting was pioneered by Igarashi and Kobayashi [1997]; Kobayashi [1997], who

applied the idea to deadlock prevention in the 𝜋-calculus as well as race freedom [Igarashi and

Kobayashi 2001, 2004]. Typically, types are augmented with the relative ordering of channel actions,

with the type system ensuring that the transitive closure of such orderings forms a strict partial

order. Building on this, Kobayashi [2002a] proposed type systems that ensure a stronger property,

dubbed lock freedom, and variants that are amenable to type inference [Kobayashi 2005; Kobayashi

et al. 2000]. Kobayashi [2006] extended this to account for recursive processes and type inference.

The most advanced system [Giachino et al. 2014; Kobayashi and Laneve 2017] in this series supports

unbounded process networks, allowing dynamic creation of circular topologies.
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Padovani [2014] contributes a simplified account of Kobayashi-style orders, albeit at the cost

of expressivity, which, assuming linear channel usage, gets by with a single priority rather than

usage information. Padovani [2014]’s system supports priority polymorphism to support cyclic

interleavings of recursive processes. Padovani’s system also served as a source of inspiration for

the development of a functional language with session types by Dardha and Gay [2018]; Kokke

and Dardha [2021]. The authors’ system focuses on the integration with a functional language,

and currently lacks support of recursive circular behavior. Kobayashi-style orders have also been

adopted in the multiparty session type setting [Bettini et al. 2008; Coppo et al. 2013, 2016] to

establish global progress in the presence of multiparty session interleavings.

Like Giachino et al. [2014]; Kobayashi and Laneve [2017]’s system, our extended system 𝜆lock++
supports unbounded process networks (see Section 6.1). However, the two systems differ conceptu-

ally: whereas our approach is primarily guided by topology, Kobayashi-style orders are guided by

orders. As a result, the systems differ in technical details and user experience. For example, our core

language 𝜆lock does not require any additional annotations, deadlock freedom simply follows from

thread-local linearity. On the other hand, 𝜆lock++ does require lock orders. These orders, however,

are purely local to a lock group, and there is no need for local orders to comply with each other

or a global lock order, or any other condition across groups, when acquiring locks from distinct

groups. To the best of our knowledge, this feature is novel and increases compositionality.

Program logics. Our work is tangentially related to works using Hoare logics with lock orders

[Hamin and Jacobs 2018; Leino et al. 2010] for deadlock freedom and work using concurrent

separation logic [da Rocha Pinto et al. 2014; D’Osualdo et al. 2021; Farka et al. 2021; Jung et al.

2018b, 2015; Nanevski et al. 2019] for program verification. Our focus is on type-based, and thus

automated verification. A fully fledged separation logic that is capable of proving deadlock freedom

using sharing topologies is still missing. This is something we hope to explore in the future.

9 LIMITATIONS AND FUTUREWORK
No decidable type system is without its limitations, and 𝜆lock++ is no exception. To our understanding,

the main limitations of 𝜆lock and 𝜆lock++ are as follows:

Lock group references have static size. While locks can be added to a lock group dynamically,

controlled by a run-time variable 𝑛 (e.g., in dynamic dining philosophers), the number of locks

that can be accessed via a single lock group reference at any given point in the program is statically

determined by the length of the type-level list (e.g., in dining philosophers, each philosopher

accesses two locks). This type dependency curtails expressivity when a lock group reference is

used in a loop, requiring the type to be invariant across iterations and thus fixing simultaneous

access to a statically predetermined number of locks in a lock group, rather than adjusting that

number dynamically.

DAG-shaped mutable data structures. The simple locks of 𝜆lock can be used as mutable reference

cells. The operational semantics employs reference counting memory management. Reference

counting guarantees memory leak freedom as long as the data has the shape of a directed acyclic

graph (DAG), and is often used that way. In a DAG, as opposed to a tree, a node may have multiple

parents. In 𝜆lock, a node can have multiple parents as well, but these parents are always disjoint.
Thus, in terms of data shapes that can be expressed, 𝜆lock supports a strict superset of tree-shapes,

but a strict subset of DAG-shapes. It would be nice to relax this restriction and support general

DAGs, but we do not know how to do so without introducing the possibility of deadlock. The issue

is that we could potentially obtain a duplicate reference to the same lock via different paths in the

DAG, which can be used to create deadlocks.
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Rust’s unsafe. Rust has the unsafemechanism for code that violates the rules of the borrow checker,

to be used if the programmer promises that the code is safe and upholds Rust’s invariants [Jung et al.

2018a]. One could analogously imagine an unsafe construct for 𝜆lock that allows the programmer

to violate the linearity restriction and freely duplicate a lock, if the programmer promises that

the code is safe and upholds 𝜆lock’s invariants. The open problem would be characterizing the

invariants that the programmer would be responsible for upholding in their unsafe code, such that

deadlock and leak freedom is guaranteed even when their unsafe code is mixed with other code. A

mechanized meta theory will require extending tools like Iris with support for deadlock and leak

freedom based on sharing topologies.

10 CONCLUSION
We have presented 𝜆lock, a language with locks where deadlock and memory leak freedom is

guaranteed by type checking. Deadlock and leak freedom are ensured by restricting the sharing

topology between locks and threads. This enables the 𝜆lock type system to be free of additional

checks, such as lock orders.

The locks in 𝜆lock are higher-order, meaning that we can store arbitary linear values in locks, and

locks themselves are completely first class entities. In particular, we can store locks in locks. This is

a crucial ingredient that allows us to implement session-typed channels in terms of locks.

We have also presented 𝜆lock++, which extends 𝜆lock with lock groups, and allows sharing multiple

locks with the child thread when we fork. This is kept deadlock free by requiring the acquire and
wait operations to happen in accordance with the lock order local to the group. Crucially, there is

no global order, and different lock groups can be interacted with completely independently; locks

from different lock groups can be acquired simultaneously without restrictions.

We hope that this is a step toward the end goal of having an expressive concurrent language

where deadlock and leak freedom follow from the type system. As a next step toward this, we

would like to distill more general principles that allow us to design concurrent languages based on

the sharing topology.
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