Probabilistic Programming

Session Preview

Jules Jacobs

def play():
n=0
H={1..99}
while H # @:
n=(n+ flip()) % 100
H=H \ {n}
return n

def flip():
if rand() < 0.5 then -1 else +1

results =[]
while results.length < 100000:
results.append(play())

def play():

n=0

H={1..99}

while H # @:
n=(n+ flip()) % 100
H=H \ {n}

observe(n ==1 or n == 50)

return n

def flip():
if rand() < 0.5 then -1 else +1

def observe(b): if not b then throw Skip

results =[]

while results.length < 100000:
try: results.append(play())
catch Skip: continue

def play():

n=0

H={1..99}

while H # @:
observe(1 € H or 50 € H)
n=(n+flip()) % 100
H=H \ {n}

return n

def flip():
if rand() < 0.5 then -1 else +1

def observe(b): if not b then throw Skip

results =[]

while results.length < 100000:
try: results.append(play())
catch Skip: continue

Exact,

Mon te Networks

Qua Sl Autoregressive Parameter Compller

DlStrlbUthnmm

Op tlmlzaglon prior \V/ariab
dln Ab traction
gaes'e::t;t-lQLambda T h e O r Knov&edgeBOf’el
e a S O n l n Processes aaFo%maatet lon
f
ciede | RMethodsSprobability.

7y >\ S
= + + 0
- - ' .8 'r—‘u Non 'E,
4':: .8 : é_ g Hidden i
" o
-§ o+ 8 Equatlons: ‘E eneratlve Posterlor leellhOOd
= O LU r a h .8-‘3 Propagatlon Syst emcs Loglc
5 & 60 U] £ 5 T tH ek
8 — U omputationa l A) § t; Machlne
a < S Slamp lng : S ﬁ\nakysm
Acyclic Pyro L = Checkin
Max1m12a>t/1on Automated 'C‘ 1ffe= ential gDOlTlaln'.: ® [1°-I-a-p; 5
leferentlatlono Functlonal A gOFlt mlcl%gmsmnn‘ HPredlctlve

hearning--Bayesian
Va

Markov anguages riational

Program Joint
veProgrammingiodeling

nglnes Continuous Belief

TenSOFFIOWI GlbbSCo'npllatlon 0 S&ﬂtl(ﬁs
SS tta ‘t 1 %t icaal]-Discrete

ra p lca Dlaetraarchlcal
Autoencoders

Directed

Spaces. 0

Simula

Probabilistic Programming Interfaces for Random Graphs:
Markov Categories, Graphons, and Nominal Sets

NATE ACKERMAN, Harvard University, USA

CAMERON E. FREER, Massachusetts Institute of Technology, USA
YOUNESSE KADDAR, University of Oxford, UK

JACEK KARWO WSKI, University of Oxford, UK

SEAN MOSS, University of Birmingham, UK

DANIEL ROY, University of Toronto, Canada

SAM STATON, University of Oxford, UK

HONGSEOK YANG, School of Computing, KAIST, South Korea

Random graphs probabilistic programming

Probabilistic Programming Interfaces for Random Graphs:
Markov Categories, Graphons, and Nominal Sets

new : unlit — vertex

NATE ACKERMAN, Harvard University, USA

CAMERON E. FREER, Massachusetts Institute of Technology, USA
YOUNESSE KADDAR, University of Oxford, UK

JACEK KARWOWSKI, University of Oxford, UK

SEAN MOSS, University of Birmingham, UK

DANIEL ROY, University of Toronto, Canada e d g e : V e r t e X x* V e r t e X % b O O -L

SAM STATON, University of Oxford, UK
HONGSEOK YANG, School of Computing, KAIST, South Korea

We study semantic models of probabilistic programming languages over graphs, and establish a connection to
graphons from graph theory and combinatorics. We show that every well-behaved equational theory for our
graph probabilistic programming language corresponds to a graphon, and conversely, every graphon arises in
this way.

We provide three constructions for showing that every graphon arises from an equational theory. The first is
an abstract construction, using Markov categories and monoidal indeterminates. The second and third are more
concrete. The second is in terms of traditional measure theoretic probability, which covers ‘black-and-white’
graphons. The third is in terms of probability monads on the nominal sets of Gabbay and Pitts. Specifically,
we use a variation of nominal sets induced by the theory of graphs, which covers Erd6s-Rényi graphons. In
this way, we build new models of graph probabilistic programming from graphons.

=
CCS Concepts: « Theory of computation — Semantics and reasoning; Probabilistic computation. G r a h O n E at O n a I t h e 0
Additional Key Words and Phrases: probability monads, exchangeable processes, graphons, nominal sets, p q u I ry
Markov categories, probabilistic programming

ACM Reference Format:
Nate Ackerman, Cameron E. Freer, Younesse Kaddar, Jacek Karwowski, Sean Moss, Daniel Roy, Sam Staton,
and Hongseok Yang. 2024. Probabilistic Programming Interfaces for Random Graphs: Markov Categories,

Graphons, and Nominal Sets. Proc. ACM Program. Lang. 8, POPL, Article 61 (January 2024), 32 pages. https: P d - O 1 2 _> O 1 P ro ra m S A f— B
//doi.org/10.1145/3632903 e g e u b) —

1 INTRODUCTION

This paper is about the semantic structures underlying probabilistic programming with random
graphs. Random graphs have applications in statistical modelling across biology, chemistry, epidemi-
ology, and so on, as well as theoretical interest in graph theory and combinatorics (e.g. [Bornholdt
and Schuster 2002]). Probabilistic programming, i.e. programming for statistical modelling [van de

Authors’ addresses: Nate Ackerman, Harvard University, USA, nate@aleph0.net; Cameron E. Freer, Massachusetts Institute
of Technology, USA, freer@mit.edu; Younesse Kaddar, University of Oxford, UK, younesse.kaddar@chch.ox.ac.uk; Jacek
Karwowski, University of Oxford, UK, jacek.karwowski@cs.ox.ac.uk; Sean Moss, University of Birmingham, UK, s.k.moss@
bham.ac.uk; Daniel Roy, University of Toronto, Canada, daniel.roy@utoronto.ca; Sam Staton, University of Oxford, UK,
sam.staton@cs.ox.ac.uk; Hongseok Yang, School of Computing, KAIST, South Korea, hongseok00@gmail.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART61
https://doi.org/10.1145/3632903

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 61. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching
Gaussian Mixtures

FRANCESCA RANDONE, IMT School for Advanced Studies Lucca, Italy
LUCA BORTOLUSSI, University of Trieste, Italy

EMILIO INCERTO, IMT School for Advanced Studies Lucca, Italy
MIRCO TRIBASTONE, IMT School for Advanced Studies Lucca, Italy

Inference of Probabilistic Programs with Moment-Matching
Gaussian Mixtures

FRANCESCA RANDONE, IMT School for Advanced Studies Lucca, Italy
LUCA BORTOLUSSI, University of Trieste, Italy

EMILIO INCERTO, IMT School for Advanced Studies Lucca, Italy
MIRCO TRIBASTONE, IMT School for Advanced Studies Lucca, Italy

Computing the posterior distribution of a probabilistic program is a hard task for which no one-fit-for-all
solution exists. We propose Gaussian Semantics, which approximates the exact probabilistic semantics of a
bounded program by means of Gaussian mixtures. It is parametrized by a map that associates each program
location with the moment order to be matched in the approximation. We provide two main contributions.
The first is a universal approximation theorem stating that, under mild conditions, Gaussian Semantics can
approximate the exact semantics arbitrarily closely. The second is an approximation that matches up to
second-order moments analytically in face of the generally difficult problem of matching moments of Gaussian
mixtures with arbitrary moment order. We test our second-order Gaussian approximation (SOGA) on a number
of case studies from the literature. We show that it can provide accurate estimates in models not supported
by other approximation methods or when exact symbolic techniques fail because of complex expressions or
non-simplified integrals. On two notable classes of problems, namely collaborative filtering and programs
involving mixtures of continuous and discrete distributions, we show that SOGA significantly outperforms
alternative techniques in terms of accuracy and computational time.

CCS Concepts: «» Theory of computation — Denotational semantics; - Mathematics of computing —
Probabilistic reasoning algorithms.

Additional Key Words and Phrases: probabilistic programming, inference, Gaussian mixtures

ACM Reference Format:

Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone. 2024. Inference of Probabilis-
tic Programs with Moment-Matching Gaussian Mixtures. Proc. ACM Program. Lang. 8, POPL, Article 63
(January 2024), 31 pages. https://doi.org/10.1145/3632905

1 INTRODUCTION
Probabilistic programming languages are programming languages augmented with primitives
expressing probabilistic behaviours [Gordon et al. 2014]. Examples are random assignments (“pro-
gram variable x is distributed according to the probability distribution D”), probabilistic choices
(“do P, with probability p else P,) or conditioning (“variable x is distributed according to D, under
the constraint that it can only take positive values”). This has enabled a variety of applications such
as the analysis of randomized algorithms, machine learning and biology [Gordon et al. 2014].
Given a probabilistic program, there are different equivalent ways in which its semantics can be
defined [Kozen 1983]. Following Kozen’s Semantics 2 [Kozen 1979], in this paper we see a program
as a transformer: given an initial joint distribution over the program variables, each instruction

Authors’ addresses: Francesca Randone, IMT School for Advanced Studies Lucca, Italy, francesca.randone@imtlucca.it; Luca
Bortolussi, University of Trieste, Italy, Ibortolussi@units.it; Emilio Incerto, IMT School for Advanced Studies Lucca, Italy,
emilio.incerto@imtlucca.it; Mirco Tribastone, IMT School for Advanced Studies Lucca, Italy, mirco.tribastone@imtlucca.it.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART63
https://doi.org/10.1145/3632905

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Gaussian Semantics

Gausslan_semantics

G —|P,| D »G,
moment-matching

up to r order
moments

exact semantics

Mixtures of Gaussians

Algorithm 2 SOGA(node)

input_list = |]

for par in node.parents do
input_list.append ((par.p, par.dist))

end for

input_p, input_dist = merge_dist(input_list)

node.p, node.dist = node_semantics(node, input_p, input_dist)

for child in node.children do
SOGA(child)

end for

L

L

L

1
2
3
4
5:
6
7
8
9

L

Propagate along control flow DAG
Merge mixture at join points

Higher Order Bayesian Networks, Exactly

CLAUDIA FAGGIAN, IRIF, CNRS, Université Paris Cité, France
DANIELE PAUTASSQO, University of Turin, Italy
GABRIELE VANONI, IRIF, CNRS, Université Paris Cité, France

Higher Order Bayesian Networks, Exactly

CLAUDIA FAGGIAN, IRIF, CNRS, Université Paris Cité, France
DANIELE PAUTASSO, University of Turin, Italy
GABRIELE VANONI, IRIF, CNRS, Université Paris Cité, France

Bayesian networks are graphical first-order probabilistic models that allow for a compact representation
of large probability distributions, and for efficient inference, both exact and approximate. We introduce a
higher-order programming language—in the idealized form of a A-calculus—which we prove sound and complete
w.r.t. Bayesian networks: each Bayesian network can be encoded as a term, and conversely each (possibly
higher-order and recursive) program of ground type compiles into a Bayesian network.

The language allows for the specification of recursive probability models and hierarchical structures. More-
over, we provide a compositional and cost-aware semantics which is based on factors, the standard mathematical
tool used in Bayesian inference. Our results rely on advanced techniques rooted into linear logic, intersection
types, rewriting theory, and Girard’s geometry of interaction, which are here combined in a novel way.

CCS Concepts: » Theory of computation — Lambda calculus; Probabilistic computation; Linear logic;
Type theory; Denotational semantics.

Additional Key Words and Phrases: lambda calculus, intersection types, Bayesian networks, probabilistic
programming, denotational semantics

ACM Reference Format:
Claudia Faggian, Daniele Pautasso, and Gabriele Vanoni. 2024. Higher Order Bayesian Networks, Exactly. Proc.
ACM Program. Lang. 8, POPL, Article 84 (January 2024), 33 pages. https://doi.org/10.1145/3632926

1 INTRODUCTION

This paper is a foundational study, taking a cost-aware approach to the semantics of higher-order
probabilistic programming languages. Probabilistic models play a crucial role in several fields such
as machine learning, cognitive science, and applied statistics, with applications spanning from
finance to biology. A prominent example of such models are Bayesian networks (BNs) [Pearl 1988],
a (first-order, static) graphical formalism able to represent complex systems in a compact way
and enabling efficient inference algorithms. BNs decompose large joint distributions into smaller
factors. These are used in inference algorithms, both exact (such as message passing and variable
elimination) and approximate (sampling-based). Despite their significant strengths, the task of
modeling using Bayesian networks is comparable to the task of programming using logical circuits.

Probabilistic Programming Languages. A different approach is taken by probabilistic programming
languages (PPLs), where statistical models are specified as programs. The fundamental idea behind
PPLs is to separate the model description—the program—from the computation of the probability
distribution specified by the program—the inference task. This separation aims at making stochastic
modeling as accessible as possible, hiding the underlying inference engines, which typically en-
compass various sampling methods such as importance sampling, Markov Chain Monte Carlo, and

Authors’ addresses: Claudia Faggian, IRIF, CNRS, Université Paris Cité, France, faggian@irif.fr; Daniele Pautasso, University
of Turin, Italy, daniele.pautasso@unito.it; Gabriele Vanoni, IRIF, CNRS, Université Paris Cité, France, gabriele.vanoni@irif.fr.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART84
https://doi.org/10.1145/3632926

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 84. Publication date: January 2024.

Statisticians

Plate Notation for Bayesian Networks

timet =0 time t + 1

iy

(a) Plate (b) Unrolling m times (a) Template (b) Unrolling (2 times)

Fig. 3. Modeling m coin tosses. Fig. 4. Discrete Time Dynamic Bayesian network.

This paper
Lambda calculus notation

Terms normalise to Bayesian Networks

Strong Invariants Are Hard

On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs

JULIAN MULLNER, TU Wien, Austria
MARCEL MOOSBRUGGER, TU Wien, Austria
LAURA KOVACS, TU Wien, Austria

[f g xi ... xk]<—[1 0 u(0) ... uk(O)]
whi!eu_\'do

Strong Invariants Are Hard

On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs p 1 (xl g0 0 04 xk)

JULIAN MULLNER, TU Wien, Austria
MARCEL MOOSBRUGGER, TU Wien, Austria

LAURA KOVACS, TU Wien, Austria
pk(xl, ceey xk)

We show that computing the strongest polynomial invariant for single-path loops with polynomial assignments 2 2
is at least as hard as the SkoLEM problem, a famous problem whose decidability has been open for almost a * (x — t) + + (x — t)
century. While the strongest polynomial invariants are computable for affine loops, for polynomial loops the 1 1 ¢ k k
problem remained wide open. As an intermediate result of independent interest, we prove that reachability
for discrete polynomial dynamical systems is SkoLEM-hard as well. Furthermore, we generalize the notion g g + 1
of invariant ideals and introduce moment invariant ideals for probabilistic programs. With this tool, we

further show that the strongest polynomial moment invariant is (i) uncomputable, for probabilistic loops with

branching statements, and (ii) SkoLEM-hard to compute for polynomial probabilistic loops without branching d h s 1

statements. Finally, we identify a class of probabilistic loops for which the strongest polynomial moment en W l e

invariant is computable and provide an algorithm for it.

CCS Concepts: « Theory of computation — Invariants; Probabilistic computation; Computability;
Random walks and Markov chains.

Additional Key Words and Phrases: Strongest algebraic invariant, Point-To-Point reachability, Skolem problem, The SKOLEM PrOblem [Evere St et al. 2 003 ; Tao 2 008] . DO eSS a given linear recurrence Sequence
Probabilistic programs . .
with constant coefficients have a zero?

ACM Reference Format:

Julian Miillner, Marcel Moosbrugger, and Laura Kovacs. 2024. Strong Invariants Are Hard: On the Hardness of
Strongest Polynomial Invariants for (Probabilistic) Programs. Proc. ACM Program. Lang. 8, POPL, Article 30
(January 2024), 29 pages. https://doi.org/10.1145/3632872

The Point-To-Point Reachability Problem (P2P) : Given a single-path loop with polynomial

1 INTRODUCTION updates, is a given target state reachable starting from a given initial state?

Loop invariants describe valid program properties that hold before and after every loop iteration.
Intuitively, invariants provide correctness information that may prevent programmers from intro-
ducing errors while making changes to the loop. As such, invariants are fundamental to formalizing
program semantics as well as to automate the formal analysis and verification of programs. While
automatically synthesizing loop invariants is, in general, an uncomputable problem, when consid-

ering only single-path loops with linear updates (linear loops), the strongest polynomial invariant The SPINvV Problem: Given a single-path loop with polynomial updates, compute the strongest
is in fact computable [Karr 1976; Kovacs 2008; Miiller-Olm and Seidl 2004a]. The computability . . .
polynomial invariant.

Authors’ addresses: Julian Miillner, TU Wien, Vienna, Austria, julian.muellner@tuwien.ac.at; Marcel Moosbrugger, TU Wien,
Vienna, Austria, marcel.moosbrugger@tuwien.ac.at; Laura Kovacs, TU Wien, Vienna, Austria, laura. kovacs@tuwien.ac.at.

This work is licensed under a Creative Commons Attribution 4.0 International License. S ko I e m < P 2 P < S P I n v
—— (-

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART30
https://doi.org/10.1145/3632872

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 30. Publication date: January 2024.

What happens in the probabilistic setting?

Probabilistic Programming Interfaces for Random Graphs:
Markov Categories, Graphons, and Nominal Sets

NATE ACKERMAN, Harvard University, USA

CAMERON E. FREER, Massachusetts Institute of Technology, USA
YOUNESSE KADDAR, University of Oxford, UK

JACEK KARWOWSKI, University of Oxford, UK

SEAN MOSS, University of Birmingham, UK

DANIEL ROY, University of Toronto, Canada

SAM STATON, University of Oxford, UK

HONGSEOK YANG, School of Computing, KAIST, South Korea

We study semantic models of probabilistic programming languages over graphs, and establish a connection to
graphons from graph theory and combinatorics. We show that every well-behaved equational theory for our
graph probabilistic programming language corresponds to a graphon, and conversely, every graphon arises in
this way.

We provide three constructions for showing that every graphon arises from an equational theory. The first is
an abstract construction, using Markov categories and monoidal indeterminates. The second and third are more
concrete. The second is in terms of traditional measure theoretic probability, which covers ‘black-and-white’
graphons. The third is in terms of probability monads on the nominal sets of Gabbay and Pitts. Specifically,
we use a variation of nominal sets induced by the theory of graphs, which covers Erdés-Rényi graphons. In
this way, we build new models of graph probabilistic programming from graphons.

CCS Concepts: « Theory of computation — Semantics and reasoning; Probabilistic computation.

Additional Key Words and Phrases: probability monads, exchangeable processes, graphons, nominal sets,
Markov categories, probabilistic programming

ACM Reference Format:

Nate Ackerman, Cameron E. Freer, Younesse Kaddar, Jacek Karwowski, Sean Moss, Daniel Roy, Sam Staton,
and Hongseok Yang. 2024. Probabilistic Programming Interfaces for Random Graphs: Markov Categories,
Graphons, and Nominal Sets. Proc. ACM Program. Lang. 8, POPL, Article 61 (January 2024), 32 pages. https:
//doi.org/10.1145/3632903

1 INTRODUCTION

This paper is about the semantic structures underlying probabilistic programming with random
graphs. Random graphs have applications in statistical modelling across biology, chemistry, epidemi-
ology, and so on, as well as theoretical interest in graph theory and combinatorics (e.g. [Bornholdt
and Schuster 2002]). Probabilistic programming, i.e. programming for statistical modelling [van de

Authors’ addresses: Nate Ackerman, Harvard University, USA, nate@aleph0.net; Cameron E. Freer, Massachusetts Institute
of Technology, USA, freer@mit.edu; Younesse Kaddar, University of Oxford, UK, younesse. kaddar@chch.ox.ac.uk; Jacek
Karwowski, University of Oxford, UK, jacek karwowski@cs.ox.ac.uk; Sean Moss, University of Birmingham, UK, s k.moss@
bham.ac.uk; Daniel Roy, University of Toronto, Canada, daniel.roy@utoronto.ca; Sam Staton, University of Oxford, UK,
sam.staton@cs.ox.ac.uk; Hongseok Yang, School of Computing, KAIST, South Korea, hongseok00@gmail.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART61

https://doi.org/10.1145/3632903

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 61. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching
Gaussian Mixtures

FRANCESCA RANDONE, IMT School for Advanced Studies Lucca, Italy
LUCA BORTOLUSSI, University of Trieste, Italy

EMILIO INCERTO, IMT School for Advanced Studies Lucca, Italy
MIRCO TRIBASTONE, IMT School for Advanced Studies Lucca, Italy

Computing the posterior distribution of a probabilistic program is a hard task for which no one-fit-for-all
solution exists. We propose Gaussian Semantics, which approximates the exact probabilistic semantics of a
bounded program by means of Gaussian mixtures. It is parametrized by a map that associates each program
location with the moment order to be matched in the approximation. We provide two main contributions.
The first is a universal approximation theorem stating that, under mild conditions, Gaussian Semantics can
approximate the exact semantics arbitrarily closely. The second is an approximation that matches up to
second-order moments analytically in face of the generally difficult problem of matching moments of Gaussian
mixtures with arbitrary moment order. We test our second-order Gaussian approximation (SOGA) on a number
of case studies from the literature. We show that it can provide accurate estimates in models not supported
by other approximation methods or when exact symbolic techniques fail because of complex expressions or
non-simplified integrals. On two notable classes of problems, namely collaborative filtering and programs
involving mixtures of continuous and discrete distributions, we show that SOGA significantly outperforms
alternative techniques in terms of accuracy and computational time.

CCS Concepts: « Theory of computation — Denotational semantics; « Mathematics of computing —
Probabilistic reasoning algorithms.

Additional Key Words and Phrases: probabilistic programming, inference, Gaussian mixtures
ACM Reference Format:
Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone. 2024. Inference of Probabilis-

tic Programs with Moment-Matching Gaussian Mixtures. Proc. ACM Program. Lang. 8, POPL, Article 63
(January 2024), 31 pages. https://doi.org/10.1145/3632905

1 INTRODUCTION
Probabilistic programming languages are programming languages augmented with primitives
expressing probabilistic behaviours [Gordon et al. 2014]. Examples are random assignments (“pro-
gram variable x is distributed according to the probability distribution D”), probabilistic choices
(“do P, with probability p else P,) or conditioning (“variable x is distributed according to D, under
the constraint that it can only take positive values”). This has enabled a variety of applications such
as the analysis of randomized algorithms, machine learning and biology [Gordon et al. 2014].
Given a probabilistic program, there are different equivalent ways in which its semantics can be
defined [Kozen 1983]. Following Kozen’s Semantics 2 [Kozen 1979], in this paper we see a program
as a transformer: given an initial joint distribution over the program variables, each instruction

Authors’ addresses: Francesca Randone, IMT School for Advanced Studies Lucca, Italy, francesca.randone@imtlucca.it; Luca
Bortolussi, University of Trieste, Italy, Ibortolussi@units.it; Emilio Incerto, IMT School for Advanced Studies Lucca, Italy,
emilio.incerto@imtlucca.it; Mirco Tribastone, IMT School for Advanced Studies Lucca, Italy, mirco.tribastone@imtlucca.it.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART63

https://doi.org/10.1145/3632905

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Higher Order Bayesian Networks, Exactly

CLAUDIA FAGGIAN, IRIF, CNRS, Université Paris Cité, France
DANIELE PAUTASSO, University of Turin, Italy
GABRIELE VANONI, IRIF, CNRS, Université Paris Cité, France

Bayesian networks are graphical first-order probabilistic models that allow for a compact representation
of large probability distributions, and for efficient inference, both exact and approximate. We introduce a
higher-order programming language—in the idealized form of a A-calculus—which we prove sound and complete
w.r.t. Bayesian networks: each Bayesian network can be encoded as a term, and conversely each (possibly
higher-order and recursive) program of ground type compiles into a Bayesian network.

The language allows for the specification of recursive probability models and hierarchical structures. More-
over, we provide a compositional and cost-aware semantics which is based on factors, the standard mathematical
tool used in Bayesian inference. Our results rely on advanced techniques rooted into linear logic, intersection
types, rewriting theory, and Girard’s geometry of interaction, which are here combined in a novel way.

CCS Concepts: « Theory of computation — Lambda calculus; Probabilistic computation; Linear logic;
Type theory; Denotational semantics.

Additional Key Words and Phrases: lambda calculus, intersection types, Bayesian networks, probabilistic
programming, denotational semantics

ACM Reference Format:
Claudia Faggian, Daniele Pautasso, and Gabriele Vanoni. 2024. Higher Order Bayesian Networks, Exactly. Proc.
ACM Program. Lang. 8, POPL, Article 84 (January 2024), 33 pages. https://doi.org/10.1145/3632926

1 INTRODUCTION

This paper is a foundational study, taking a cost-aware approach to the semantics of higher-order
probabilistic programming languages. Probabilistic models play a crucial role in several fields such
as machine learning, cognitive science, and applied statistics, with applications spanning from
finance to biology. A prominent example of such models are Bayesian networks (BNs) [Pearl 1988],
a (first-order, static) graphical formalism able to represent complex systems in a compact way
and enabling efficient inference algorithms. BNs decompose large joint distributions into smaller
factors. These are used in inference algorithms, both exact (such as message passing and variable
elimination) and approximate (sampling-based). Despite their significant strengths, the task of
modeling using Bayesian networks is comparable to the task of programming using logical circuits.

Probabilistic Programming Languages. A different approach is taken by probabilistic programming
languages (PPLs), where statistical models are specified as programs. The fundamental idea behind
PPLs is to separate the model description—the program—from the computation of the probability
distribution specified by the program—the inference task. This separation aims at making stochastic
modeling as accessible as possible, hiding the underlying inference engines, which typically en-
compass various sampling methods such as importance sampling, Markov Chain Monte Carlo, and

Authors’ addresses: Claudia Faggian, IRIF, CNRS, Université Paris Cité, France, faggian@irif.fr; Daniele Pautasso, University
of Turin, Italy, daniele pautasso@unito.it; Gabriele Vanoni, IRIF, CNRS, Université Paris Cité, France, gabriele.vanoni@irif fr.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART84

https://doi.org/10.1145/3632926

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 84. Publication date: January 2024.

Strong Invariants Are Hard

On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs

JULIAN MULLNER, TU Wien, Austria
MARCEL MOOSBRUGGER, TU Wien, Austria
LAURA KOVACS, TU Wien, Austria

We show that computing the strongest polynomial invariant for single-path loops with polynomial assignments
is at least as hard as the SKOLEM problem, a famous problem whose decidability has been open for almost a
century. While the strongest polynomial invariants are computable for affine loops, for polynomial loops the
problem remained wide open. As an intermediate result of independent interest, we prove that reachability
for discrete polynomial dynamical systems is SkoLEM-hard as well. Furthermore, we generalize the notion
of invariant ideals and introduce moment invariant ideals for probabilistic programs. With this tool, we
further show that the strongest polynomial moment invariant is (i) uncomputable, for probabilistic loops with
branching statements, and (ii) SkoLEM-hard to compute for polynomial probabilistic loops without branching
statements. Finally, we identify a class of probabilistic loops for which the strongest polynomial moment
invariant is computable and provide an algorithm for it.

CCS Concepts: « Theory of computation — Invariants; Probabilistic computation; Computability;
Random walks and Markov chains.

Additional Key Words and Phrases: Strongest algebraic invariant, Point-To-Point reachability, Skolem problem,
Probabilistic programs

ACM Reference Format:

Julian Miillner, Marcel Moosbrugger, and Laura Kovécs. 2024. Strong Invariants Are Hard: On the Hardness of
Strongest Polynomial Invariants for (Probabilistic) Programs. Proc. ACM Program. Lang. 8, POPL, Article 30
(January 2024), 29 pages. https://doi.org/10.1145/3632872

1 INTRODUCTION

Loop invariants describe valid program properties that hold before and after every loop iteration.
Intuitively, invariants provide correctness information that may prevent programmers from intro-
ducing errors while making changes to the loop. As such, invariants are fundamental to formalizing
program semantics as well as to automate the formal analysis and verification of programs. While
automatically synthesizing loop invariants is, in general, an uncomputable problem, when consid-
ering only single-path loops with linear updates (linear loops), the strongest polynomial invariant
is in fact computable [Karr 1976; Kovacs 2008; Miiller-Olm and Seidl 2004a]. The computability

Authors’ addresses: Julian Miillner, TU Wien, Vienna, Austria, julian. muellner@tuwien.ac.at; Marcel Moosbrugger, TU Wien,
Vienna, Austria, marcel.moosbrugger@tuwien.ac.at; Laura Kovacs, TU Wien, Vienna, Austria, laurakovacs@tuwien.ac.at.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART30

https://doi.org/10.1145/3632872

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 30. Publication date: January 2024.

m Probabilistic Programs at Turing Lecture

Chair(s): Alexandra Silva

Probabilistic programming interfaces for random graphs: Markov categories, graphons, and nominal sets
Nate Ackerman , Cameron Freer , Younesse Kaddar , Jacek KarwowskKi
, Sean Moss , Daniel Roy , Sam Staton , Hongseok Yang

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures
Francesca Randone , Luca Bortolussi , Emilio
Incerto , Mirco Tribastone

Higher Order Bayesian Networks, Exactly
Claudia Faggian , Daniele Pautasso , Gabriele Vanoni

Strong Invariants Are Hard: On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs
Julian Mullner , Marcel Moosbrugger , Laura Kovacs

