Higher-Order Leak and Deadlock Free Locks
(POPL/23)

Jules Jacobs Stephanie Balzer

Radboud University — Cornell University Carnegie Mellon University

D ® B-O-0-0

g 94

() ()@

Memory management with substructural types

fn min(x: u32, y: u32) — u32 {
let mut v = Vec::new(Q);
v.push(x);
v.push(y);
v.sort(Q);
return v[0];
// v is deallocated

» Each heap allocation has a single owning reference
» Deallocated when owning reference disappears

» Prevents memory leaks...?

Memory leaks in Rust

Arc<Mutex<T>>

» Shareable mutable reference to T

> Guarded by a lock
» Reference-counted

» Can store mutexes in mutexes

enum List { Nil, Cons(u32, Arc<Mutex<List>>) }

Memory leaks in Rust

Arc<Mutex<T>>

» Shareable mutable reference to T

> Guarded by a lock
> Reference-counted

» Can store mutexes in mutexes

enum List { Nil, Cons(u32, Arc<Mutex<List>>) }
Memory leaks!

let x = Arc::new(Mutex::new(Nil)); // create list
*x.1lock() = Cons(1l, x.clone()); // create cycle
// refcount=2

drop(x);
// refcount=1 — list is leaked

Deadlocks in Rust

fn swap(x: &Mutex<u32>, y: &Mutex<u32>){
let mut gx = x.lock(); // acquire locks
let mut gy = y.lockQ);

let tmp = *gx; // swap contents

“gx = *gy;
*gy = tmp;

drop(gx); // release locks
drop(gy);
}

Deadlocks!

let x = Mutex::new(l);
let y = Mutex::new(2);
fork{ swap(&x, &y); }
fork{ swap(&y, &x); }

Can we guarantee leak and deadlock
freedom by type checking?

Yes, we can!

Language A, with a linearly typed lock API
» No leaks/deadlocks (v in Coq)

» Any lock in scope can be safely acquired
fn swap(x: &Mutex<u32>, y: &Mutex<u32>) v

» Can store locks in locks (recursively)
enum List{Nil,Cons(u32, Arc<Mutex<List>>)} v/

» Key invariant: acyclic sharing topology

Yes, we can!

Language A, with a linearly typed lock API
» No leaks/deadlocks (v in Coq)

» Any lock in scope can be safely acquired
fn swap(x: &Mutex<u32>, y: &Mutex<u32>) v

» Can store locks in locks (recursively)
enum List{Nil,Cons(u32, Arc<Mutex<List>>)} v/

» Key invariant: acyclic sharing topology

Extension Ajyc4 With cyclic sharing topology
» No leaks/deadlocks (v in Coq)
» Cycles within lock groups allowed via local lock orders /

> Aock = all lock groups are singletons

Alock’'s lock type

A shareable reference to T, similar to Arc<Mutex<t>> in Rust,

but linearly typed
a ac{0,1}

» a = 1: this reference has to deallocate the lock
» b = 1: this reference has to release the lock

Alock’'s lock type

A shareable reference to T, similar to Arc<Mutex<t>> in Rust,

but linearly typed

ac{0,1}
(Th) be{01)

» a = 1: this reference has to deallocate the lock
» b = 1: this reference has to release the lock

Alock 'S lock API

new: 1 —o (1

—_—

Alock 'S lock API

<T } > refs: 1
G val:

new: 1 —o (1

—_—

Alock 'S lock API

new: 1 —o (t})

fork : (T5!152) x ((tf2) — 1) —o (1}

<T } > refs: 1
G val:

Alock 'S lock API

new: 1 —o (t})

fork : (T5!152) x ((tf2) — 1) —o (1}

Alock 'S lock API

new: 1 —o (t})

fork : (T5!152) x ((tf2) — 1) —o (1}

Alock 'S lock API

new :
fork :
release :

acquire :

(82 (122) —0 1) o (xd)

Alock 'S lock API

new :
fork :
release :

acquire :

(T 5y x ((12) — 1) —o (1))

Alock 'S lock API

new :
fork :
release :

acquire :

(T 5y x ((12) — 1) —o (1))

Alock 'S lock API

new :
fork :
release :

acquire :

(T 5y x ((12) — 1) —o (1))

Alock 'S lock API

new :
fork :
release :

acquire :

(T 5y x ((12) — 1) —o (1))

Alock 'S lock API

new :
fork :
release :
acquire :
drop :

wait :

<Ta1+a2> % (<Ta§> 5 1) 5 <T

bi+by

ai

Alock 'S lock API

new :
fork :
release :
acquire :
drop :

wait :

<Ta1+a2> % (<Ta§> 5 1) 5 <T

bi+by

ai

Alock 'S lock API

1
G <T0> refs: 1
val:

new :
fork :
release :
acquire :
drop :

wait :

o) o (7
9) o 1
hor

Alock 'S lock API

new :
fork :
release :
acquire :
drop :

wait :

<Ta1+a2> % (<Ta§> 5 1) 5 <T

bi+by

ai

Which concurrency patterns
does Ajoq support?

Simultaneous acquisition of any locks in scope

letswap = A(fy: (t$), 8o (T)).

let (¢4 : (T ;") Xy :T) = acquire({y) in
let (6 : (T > Xs :T) = acquire({,) in
let ¢y : (T g) = release({{, x») in

let ¢ : (t&) = release(ly, xq) in

(€4, £2)

v

deadlock free

10

Simultaneous acquisition of any locks in scope

letswap = A(fy: (t$), 8o (T)).
let (¢4 : (T ;") Xy :7T) = acquire({;) in \/
let (6 : (T > Xs :T) = acquire({,) in
let ¢y : (T 8‘) = release({{, x») in deadlock free
let ¢ : (t&) = release(ly, xq) in
(€4, £2)

Deadlocks?

let x release(new(), 1) in
let y = release(new(),2) in
let x = fork(x, Ax. swap(x,y)---)in

Variable y not in scope here!

Simultaneous acquisition of any locks in scope

letswap = A(ly: (T8), Lo (&),

let (¢4 : (T ;") Xy :7T) = acquire({;) in \/
let (6 : (T > Xs :T) = acquire({,) in
let ¢y : (T 8‘) = release({{, x») in deadlock free
let ¢ : (t&) = release(ly, xq) in
(€4, £2)
Deadlocks?

letx = (---)in

letys,y2,¥3. Y4, Y56 = (---)in

let x = fork(x, Ax. foo(x, ys, Vs, ¥s)) in
bar(x, y1,Y2,¥3)

10

Storing locks in locks

v

release({ : <<Tg> ?% 7 <Tg>) leak free

Another thread can acquire({;) to obtain {5

11

Futures / promises / fork-join

let ¢: (t) = fork(new(): (T]),Al: (t9).
drop(release({,E : 1))
)in ---wait({) - - -

Obligation to fulfill promise cannot be discarded

12

Other concurrency patterns

Recursive shared mutable data structures

tree = (1+ 1 x tree x tree {))

13

Other concurrency patterns

Recursive shared mutable data structures

tree = (141 x tree x tree ()

Message passing as a library

With session types encoded as A, types:

s:=lts|?ts|s&s|s®ds|Endy | End; | ux.s | x

Shared & client-server sessions:

(wxIt.21.8 @ End, J)

13

}\loc:k,S

Deadlock and Leak Freedom Theorem

Weak deadlock and leak freedom theorem

Program semantics

Ty 2 [letx = new()in (---)]

{T4} ~ {T1/:L1} ~ o~ Ty, Ty, Ly, Lo,)
~ e

P1 P2 Pn

15

Weak deadlock and leak freedom theorem

Program semantics

Ty 2 [letx = new()in (---)]

?
(T} ~> {T{ L} ~ -~ {T1,To, . Ly Lo,)~ ppay
~~ ~——

P1 P2 Pn

15

Weak deadlock and leak freedom theorem

Program semantics

Ty 2 [letx = new()in (---)]

?
(T} ~> {T{ L} ~ -~ {T1,To, . Ly Lo,)~ ppay
1 2 n

Global progress

If p; type-checks and py ~* p, # 0, then 3pp. 1. pn ~> Ppy1

No total deadlocks, leaked memory, run-time type errors, use-after-free, etc.

15

Weak deadlock and leak freedom theorem

Program semantics

Ty 2 [letx = new()in (---)]

?
(T} ~> {T{ L} ~ -~ {T1,To, . Ly Lo,)~ ppay
~~— N—_—— v
P4 P2 Pn

Global progress

If py type-checks and py ~>* pp # 0, then Jp,11. pn ~ P

No total deadlocks, leaked memory, run-time type errors, use-after-free, etc.

v in Coq (= 13k loc)

15

Strong deadlock and leak freedom theorem (v in Coq)

T € p waits for L € p if thread T is blocked on lock L.
L € p waits for T ¢ p if thread T references lock L but is not blocked on L.
L € p waits for L’ € p if lock L’ references lock L.

16

Strong deadlock and leak freedom theorem (v in Coq)

T € p waits for L € p if thread T is blocked on lock L.

L € p waits for T € p if thread T references lock L but is not blocked on L.

L € p waits for L’ € p if lock L’ references lock L.
X € p is reachable if X transitively waits for T € p that can progress

S Cpisadeadlockifno T € S can step and no X € Swaits for Y € p\ S

16

Strong deadlock and leak freedom theorem (v in Coq)

T € p waits for L € p if thread T is blocked on lock L.
L € p waits for T € p if thread T references lock L but is not blocked on L.
L € p waits for L’ € p if lock L’ references lock L.

X € p is reachable if X transitively waits for T € p that can progress
S Cpisadeadlockifno T € S can step and no X € Swaits for Y € p\ S

Theorem: all X € p reachable < no deadlocks) € S C p
Theorem: p; type checked — all X € pj reachable
Corollary: p; type checked = no deadlocks ® ¢ S C p,
Corollary: p, # 0 — 3ppi1, Pn ™~ Pnid

Insight: deadlock and leak freedom are related

16

Deadlock and leak freedom proof sketch

Goal: Find a thread in p, # () that can progress

Fact 1: py type-checks = every X € p, can either progress, or waits for some Y

17

Deadlock and leak freedom proof sketch

Goal: Find a thread in p, # () that can progress
Fact 1: py type-checks = every X € p, can either progress, or waits for some Y

Therefore: Start at any X € p,, and keep following waits for edges

17

Deadlock and leak freedom proof sketch

Goal: Find a thread in p, # () that can progress
Fact 1: py type-checks = every X € p, can either progress, or waits for some Y

Therefore: Start at any X € p,, and keep following waits for edges
» What if we loop in a cycle? deadlock/leak

17

Deadlock and leak freedom proof sketch

Goal: Find a thread in p, # () that can progress
Fact 1: py type-checks = every X € p, can either progress, or waits for some Y

Therefore: Start at any X € p,, and keep following waits for edges
» What if we loop in a cycle? deadlock/leak

Fact 2: py type checks = run-time graph p, of threads & locks remains acyclic

17

Deadlock and leak freedom proof sketch

Goal: Find a thread in p, # () that can progress
Fact 1: py type-checks = every X € p, can either progress, or waits for some Y

Therefore: Start at any X € p,, and keep following waits for edges
» What if we loop in a cycle? deadlock/leak

Fact 2: py type checks = run-time graph p, of threads & locks remains acyclic

Problem: Proving Fact 1 & 2 formally (in Coq) is hard and tedious

17

Separation logic for acyclicity

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic
Jules Jacobs, Stephanie Balzer, Robbert Krebbers, in POPL'22

Motto: Do proofs in separation logic, get acyclicity for free

Key insight: Separation logic proof rules correspond to
acyclicity-preserving graph transformations!

19

Motto: Do proofs in separation logic, get acyclicity for free

Key insight: Separation logic proof rules correspond to
acyclicity-preserving graph transformations!

1. Instantiate Iris proof mode with a linear separation logic

2. Do all type preservation inside that separation logic:

Coq — Iris
Prop — iProp
PAQ — PxQ
intros — ilIntros
destruct — iDestruct
split — iSplit

3. Get acyclicity for free!*

19

Beyond acyclicity: Ajgeiiy

Beyond acyclicity

Unifying two worlds of session types

Multiparty GV: Functional Multiparty Session Types With Certified Deadlock Freedom
Jules Jacobs, Stephanie Balzer, Robbert Krebbers, in ICFP’22

GV family languages
Gay, Vasconcelos 10, Wadler 12

> Binary session types

MPST family languages
Honda "08

> Multiparty session types

22

GV family languages
Gay, Vasconcelos 10, Wadler 12

> Binary session types

» Deadlock-freedom by duality &
linear typing

MPST family languages
Honda "08

> Multiparty session types

» Deadlock-freedom by global
consistency check

22

GV family languages
Gay, Vasconcelos 10, Wadler 12

> Binary session types
» Deadlock-freedom by duality &
linear typing

» Dynamic spawning

MPST family languages
Honda "08

» Multiparty session types

» Deadlock-freedom by global
consistency check

» One static session

22

GV family languages
Gay, Vasconcelos 10, Wadler 12

> Binary session types

» Deadlock-freedom by duality &
linear typing

» Dynamic spawning

» Channels first class values

MPST family languages
Honda "08

» Multiparty session types

» Deadlock-freedom by global
consistency check

» One static session

» Channels second class

22

vV Yy

v vy

GV family languages
Gay, Vasconcelos 10, Wadler 12

Binary session types
Deadlock-freedom by duality &
linear typing

Dynamic spawning

Channels first class values

Functional programming

vV Y

v vy

MPST family languages
Honda "08

Multiparty session types

Deadlock-freedom by global
consistency check

One static session
Channels second class

Pi-calculus variants

22

vV Yy

v vy

GV family languages
Gay, Vasconcelos 10, Wadler 12

Binary session types
Deadlock-freedom by duality &
linear typing

Dynamic spawning

Channels first class values

Functional programming

GV MPST

v
A~

vV Y

v vy

MPST family languages
Honda "08

Multiparty session types

Deadlock-freedom by global
consistency check

One static session
Channels second class

Pi-calculus variants

MPGV

22

MPGYV allows local cycles

\ _./ \//
/a ;/2.\

Can we allow that in Aj,?

23

From Ajer t0 Aokt

In Ajpck, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (61,62) = fork((€1,92),?\(€1,€2).

)in

24

From Ajer t0 Aokt

In Ajpck, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (€1,€2) = fork((€1,€2),?\(€1,€2). cee)in e

No, because
» Deadlock: acquiring (¢4 then () in parallel with ({5 then {4)
» Leak: storing (¢1 into {,) in parallel with ({, into £;)

24

From Ajer t0 Aokt

In Ajpck, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (€1,€2) = fork((€1,€2),7\(€1,€2).) in ---

No, because
» Deadlock: acquiring (¢4 then () in parallel with ({5 then {4)
» Leak: storing (¢1 into {,) in parallel with ({, into £;)

Yes, if

> We make acquire and wait follow a lock order
(only for locks in the same lock group)

> We prevent storing locks inside each other
(only for locks in the same lock group)

24

Alock+s 'S lock group type

> We can only acquire and wait in the given order

» We can add and remove locks dynamically

» The type level list is a local view into a complete order.

25

Alock++ 'S lock group API

newgroup :
dropgroup :

newlk] :
droplk] :
releaselk] :

acquirelk] :
waitlk] :

fork :

1— ()
()1

(A.B) - (A7), B)
(A5, B) —o (A, B)
(A, 1§, B) x T — (A, 1§, B)

(A 8, By) —o (A, 13,By) x T
(Ao, T8, BY) —o (Ao, BY) x T

(A) x ((B) 1) — (C)

(where length(A) = k)

(where A=B & C)

26

Swap within a lock group

swap : (intd, intd) —o (int3, int)
swap({) :=
let {, x = acquire[0]({) in
let{,y = acquire[1]({) in
let { = release[0]({,y) in
let { = release[1]({,x) in

> Type system enforces an order within a group

> No restrictions between two groups
(Partial lock orders don’t allow this!)

27

Dijkstra’s dining philosophers

Lock groups allow Ajcis to have cyclic connectivity

» Example: Dijkstra’s Dining Philosophers

> Every thread (Philosopher) has access to 2 locks (forks): (fork, fork2,)
» Can grow the dining table dynamically

> Only need types of size 3 for table of size n:

(fork2, fork2,) — (fork, fork,, forkd,) — (fork2, fork2,)

bod

28

Conclusion

Rust has a practical type system for memory-safety without GC v/

30

Rust has a practical type system for memory-safety without GC v/

Can a practical type system be deadlock and leak free?

30

Rust has a practical type system for memory-safety without GC v/

Can a practical type system be deadlock and leak free?

I hope to have convinced you that:

» This might be possible & is worth trying

» Promising direction: single ownership — sharing topology

30

Rust has a practical type system for memory-safety without GC v/

Can a practical type system be deadlock and leak free?

vy

v yYyy

I hope to have convinced you that:

This might be possible & is worth trying

Promising direction: single ownership — sharing topology

Problems yet to be solved:

Type system — program logic (“Deadlock Free Iris”)
Integration with Rust features (borrowing & unsafe)
DAG-shaped mutable data structures / Rc<RefCell<T>>

30

“The authors didn’t even have to hide a bunch
of more complicated rules in an appendix.” — Reviewer A

Related work

>

4
>
>
>
>

CLASS - Rocha and Caires (ICFP21, ESOP’23)
Client-server sessions — Qian, Kavvos, Birkedal (ICFP’21)
Usages/obligations — Kobayashi et al. (see paper)
Priorities — Padovani, Dharda et al. (see paper)

Manifest sharing — Balzer et al. (ICFP’17,ESOP’19)
Session types — (see paper)

31

