
1

Higher-Order Leak and Deadlock Free Locks
(POPL’23)

Jules Jacobs
Radboud University → Cornell University

Stephanie Balzer
Carnegie Mellon University

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

{

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

2

Memory management with substructural types

fn min(x: u32, y: u32) → u32 {
let mut v = Vec::new();
v.push(x);
v.push(y);
v.sort();
return v[0];
// v is deallocated
}

▶ Each heap allocation has a single owning reference
▶ Deallocated when owning reference disappears
▶ Prevents memory leaks...?

3

Memory leaks in Rust

Arc<Mutex<T>>

▶ Shareable mutable reference to T
▶ Guarded by a lock
▶ Reference-counted

▶ Can store mutexes in mutexes

enum List { Nil, Cons(u32, Arc<Mutex<List>>) }

Memory leaks!
let x = Arc::new(Mutex::new(Nil)); // create list

*x.lock() = Cons(1, x.clone()); // create cycle

// refcount=2
drop(x);
// refcount=1 → list is leaked

3

Memory leaks in Rust

Arc<Mutex<T>>

▶ Shareable mutable reference to T
▶ Guarded by a lock
▶ Reference-counted

▶ Can store mutexes in mutexes

enum List { Nil, Cons(u32, Arc<Mutex<List>>) }

Memory leaks!
let x = Arc::new(Mutex::new(Nil)); // create list

*x.lock() = Cons(1, x.clone()); // create cycle

// refcount=2
drop(x);
// refcount=1 → list is leaked

4

Deadlocks in Rust

fn swap(x: &Mutex<u32>, y: &Mutex<u32>){
let mut gx = x.lock(); // acquire locks
let mut gy = y.lock();

let tmp = *gx; // swap contents
*gx = *gy;
*gy = tmp;

drop(gx); // release locks
drop(gy);
}

Deadlocks!
let x = Mutex::new(1);
let y = Mutex::new(2);
fork{ swap(&x, &y); }
fork{ swap(&y, &x); }

5

Can we guarantee leak and deadlock
freedom by type checking?

6

Yes, we can!

Language λlock with a linearly typed lock API
▶ No leaks/deadlocks (✓ in Coq)
▶ Any lock in scope can be safely acquired

fn swap(x: &Mutex<u32>, y: &Mutex<u32>) ✓

▶ Can store locks in locks (recursively)
enum List{Nil,Cons(u32, Arc<Mutex<List>>)} ✓

▶ Key invariant: acyclic sharing topology

Extension λlock++ with cyclic sharing topology
▶ No leaks/deadlocks (✓ in Coq)
▶ Cycles within lock groups allowed via local lock orders ✓
▶ λlock ≡ all lock groups are singletons

6

Yes, we can!

Language λlock with a linearly typed lock API
▶ No leaks/deadlocks (✓ in Coq)
▶ Any lock in scope can be safely acquired

fn swap(x: &Mutex<u32>, y: &Mutex<u32>) ✓

▶ Can store locks in locks (recursively)
enum List{Nil,Cons(u32, Arc<Mutex<List>>)} ✓

▶ Key invariant: acyclic sharing topology

Extension λlock++ with cyclic sharing topology
▶ No leaks/deadlocks (✓ in Coq)
▶ Cycles within lock groups allowed via local lock orders ✓
▶ λlock ≡ all lock groups are singletons

7

λlock’s lock type

A shareable reference to τ, similar to Arc<Mutex<t>> in Rust,
but linearly typed

Lock⟨τ a
b⟩

a∈ {0,1}
b∈ {0,1}

▶ a = 1: this reference has to deallocate the lock
▶ b = 1: this reference has to release the lock

7

λlock’s lock type

A shareable reference to τ, similar to Arc<Mutex<t>> in Rust,
but linearly typed

Lock

⟨τ a
b⟩

a∈ {0,1}
b∈ {0,1}

▶ a = 1: this reference has to deallocate the lock
▶ b = 1: this reference has to release the lock

8

λlock’s lock API

T1

refs: 1
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 1
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 1
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 2
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 3
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 3
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 3
val:

⟨τ 1
1⟩

v

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 3
val: v

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 3
val:

⟨τ 1
0⟩

T2⟨τ 0
1⟩

v

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 3
val: v

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 3
val: v

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 2
val: v

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1
refs: 1
val: v

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

8

λlock’s lock API

T1

refs:
val:

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩

acquire : ⟨τ a
0⟩ −◦ ⟨τ a

1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1

wait : ⟨τ 1
0⟩ −◦ τ

9

Which concurrency patterns
does λlock support?

10

Simultaneous acquisition of any locks in scope

let swap = λ(ℓ1 : ⟨τα
0 ⟩, ℓ2 : ⟨τα ′

0 ⟩).
let (ℓ1 : ⟨τα

1 ⟩, x1 : τ) = acquire(ℓ1) in
let (ℓ2 : ⟨τα ′

1 ⟩, x2 : τ) = acquire(ℓ2) in
let ℓ1 : ⟨τα

0 ⟩ = release(ℓ1, x2) in
let ℓ2 : ⟨τα ′

0 ⟩ = release(ℓ2, x1) in
(ℓ1, ℓ2)

✓
deadlock free

Deadlocks?

let x = (· · ·) in
let y1, y2, y3, y4, y5, y6 = (· · ·) in
let x = fork(x, λx. foo(x, y4, y5, y6)) in
bar(x, y1, y2, y3)

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

10

Simultaneous acquisition of any locks in scope

let swap = λ(ℓ1 : ⟨τα
0 ⟩, ℓ2 : ⟨τα ′

0 ⟩).
let (ℓ1 : ⟨τα

1 ⟩, x1 : τ) = acquire(ℓ1) in
let (ℓ2 : ⟨τα ′

1 ⟩, x2 : τ) = acquire(ℓ2) in
let ℓ1 : ⟨τα

0 ⟩ = release(ℓ1, x2) in
let ℓ2 : ⟨τα ′

0 ⟩ = release(ℓ2, x1) in
(ℓ1, ℓ2)

✓
deadlock free

Deadlocks?

let x = release(new(), 1) in
let y = release(new(), 2) in
let x = fork(x, λx. swap(x, y) · · ·) in
Variable y not in scope here!

let x = (· · ·) in
let y1, y2, y3, y4, y5, y6 = (· · ·) in
let x = fork(x, λx. foo(x, y4, y5, y6)) in
bar(x, y1, y2, y3)

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

10

Simultaneous acquisition of any locks in scope

let swap = λ(ℓ1 : ⟨τα
0 ⟩, ℓ2 : ⟨τα ′

0 ⟩).
let (ℓ1 : ⟨τα

1 ⟩, x1 : τ) = acquire(ℓ1) in
let (ℓ2 : ⟨τα ′

1 ⟩, x2 : τ) = acquire(ℓ2) in
let ℓ1 : ⟨τα

0 ⟩ = release(ℓ1, x2) in
let ℓ2 : ⟨τα ′

0 ⟩ = release(ℓ2, x1) in
(ℓ1, ℓ2)

✓
deadlock free

Deadlocks?

let x = (· · ·) in
let y1, y2, y3, y4, y5, y6 = (· · ·) in
let x = fork(x, λx. foo(x, y4, y5, y6)) in
bar(x, y1, y2, y3)

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

11

Storing locks in locks

release(ℓ1 : ⟨⟨τ a
b⟩

0
1⟩, ℓ2 : ⟨τ a

b⟩)
✓

leak free

Another thread can acquire(ℓ1) to obtain ℓ2

12

Futures / promises / fork-join

let ℓ : ⟨τ 1
0⟩ = fork(new() : ⟨τ 1

1⟩, λℓ : ⟨τ
0
1⟩.

drop(release(ℓ,E : τ))

) in · · ·wait(ℓ) · · ·

Obligation to fulfill promise cannot be discarded

13

Other concurrency patterns

Recursive shared mutable data structures

tree = ⟨1 + τ× tree × tree 1
0⟩

Message passing as a library

With session types encoded as λlock types:

s ::= !τ.s | ?τ.s | s& s | s⊕ s | End! | End? | µx.s | x

Shared & client-server sessions:

⟨µx.!τ.?τ.s⊕End!
0
0⟩

13

Other concurrency patterns

Recursive shared mutable data structures

tree = ⟨1 + τ× tree × tree 1
0⟩

Message passing as a library

With session types encoded as λlock types:

s ::= !τ.s | ?τ.s | s& s | s⊕ s | End! | End? | µx.s | x

Shared & client-server sessions:

⟨µx.!τ.?τ.s⊕End!
0
0⟩

14

λlock’s

Deadlock and Leak Freedom Theorem

15

Weak deadlock and leak freedom theorem

Program semantics

T1 ≜ [let x = new() in (· · ·)]

{T1}︸︷︷︸
ρ1

{ {T ′
1, L1}︸ ︷︷ ︸
ρ2

{ · · · { {T1,T2, ..., L1, L2, ...}︸ ︷︷ ︸
ρn

?
{ ρn+1

Global progress

If ρ1 type-checks and ρ1 {
∗ ρn ≠ ∅, then ∃ρn+1. ρn { ρn+1

No total deadlocks, leaked memory, run-time type errors, use-after-free, etc.
✓ in Coq (≈ 13k loc)

15

Weak deadlock and leak freedom theorem

Program semantics

T1 ≜ [let x = new() in (· · ·)]

{T1}︸︷︷︸
ρ1

{ {T ′
1, L1}︸ ︷︷ ︸
ρ2

{ · · · { {T1,T2, ..., L1, L2, ...}︸ ︷︷ ︸
ρn

?
{ ρn+1

Global progress

If ρ1 type-checks and ρ1 {
∗ ρn ≠ ∅, then ∃ρn+1. ρn { ρn+1

No total deadlocks, leaked memory, run-time type errors, use-after-free, etc.
✓ in Coq (≈ 13k loc)

15

Weak deadlock and leak freedom theorem

Program semantics

T1 ≜ [let x = new() in (· · ·)]

{T1}︸︷︷︸
ρ1

{ {T ′
1, L1}︸ ︷︷ ︸
ρ2

{ · · · { {T1,T2, ..., L1, L2, ...}︸ ︷︷ ︸
ρn

?
{ ρn+1

Global progress

If ρ1 type-checks and ρ1 {
∗ ρn ≠ ∅, then ∃ρn+1. ρn { ρn+1

No total deadlocks, leaked memory, run-time type errors, use-after-free, etc.

✓ in Coq (≈ 13k loc)

15

Weak deadlock and leak freedom theorem

Program semantics

T1 ≜ [let x = new() in (· · ·)]

{T1}︸︷︷︸
ρ1

{ {T ′
1, L1}︸ ︷︷ ︸
ρ2

{ · · · { {T1,T2, ..., L1, L2, ...}︸ ︷︷ ︸
ρn

?
{ ρn+1

Global progress

If ρ1 type-checks and ρ1 {
∗ ρn ≠ ∅, then ∃ρn+1. ρn { ρn+1

No total deadlocks, leaked memory, run-time type errors, use-after-free, etc.
✓ in Coq (≈ 13k loc)

16

Strong deadlock and leak freedom theorem (✓ in Coq)

T ∈ ρ waits for L ∈ ρ if thread T is blocked on lock L.
L ∈ ρ waits for T ∈ ρ if thread T references lock L but is not blocked on L.
L ∈ ρ waits for L ′ ∈ ρ if lock L ′ references lock L.

X ∈ ρ is reachable if X transitively waits for T ∈ ρ that can progress

S ⊆ ρ is a deadlock if no T ∈ S can step and no X ∈ S waits for Y ∈ ρ \ S

Theorem: all X ∈ ρ reachable ⇐⇒ no deadlocks ∅ ⊂ S ⊆ ρ

Theorem: ρ1 type checked =⇒ all X ∈ ρn reachable
Corollary: ρ1 type checked =⇒ no deadlocks ∅ ⊂ S ⊆ ρn

Corollary: ρn ≠ ∅ → ∃ρn+1, ρn { ρn+1

Insight: deadlock and leak freedom are related

16

Strong deadlock and leak freedom theorem (✓ in Coq)

T ∈ ρ waits for L ∈ ρ if thread T is blocked on lock L.
L ∈ ρ waits for T ∈ ρ if thread T references lock L but is not blocked on L.
L ∈ ρ waits for L ′ ∈ ρ if lock L ′ references lock L.

X ∈ ρ is reachable if X transitively waits for T ∈ ρ that can progress

S ⊆ ρ is a deadlock if no T ∈ S can step and no X ∈ S waits for Y ∈ ρ \ S

Theorem: all X ∈ ρ reachable ⇐⇒ no deadlocks ∅ ⊂ S ⊆ ρ

Theorem: ρ1 type checked =⇒ all X ∈ ρn reachable
Corollary: ρ1 type checked =⇒ no deadlocks ∅ ⊂ S ⊆ ρn

Corollary: ρn ≠ ∅ → ∃ρn+1, ρn { ρn+1

Insight: deadlock and leak freedom are related

16

Strong deadlock and leak freedom theorem (✓ in Coq)

T ∈ ρ waits for L ∈ ρ if thread T is blocked on lock L.
L ∈ ρ waits for T ∈ ρ if thread T references lock L but is not blocked on L.
L ∈ ρ waits for L ′ ∈ ρ if lock L ′ references lock L.

X ∈ ρ is reachable if X transitively waits for T ∈ ρ that can progress

S ⊆ ρ is a deadlock if no T ∈ S can step and no X ∈ S waits for Y ∈ ρ \ S

Theorem: all X ∈ ρ reachable ⇐⇒ no deadlocks ∅ ⊂ S ⊆ ρ

Theorem: ρ1 type checked =⇒ all X ∈ ρn reachable
Corollary: ρ1 type checked =⇒ no deadlocks ∅ ⊂ S ⊆ ρn

Corollary: ρn ≠ ∅ → ∃ρn+1, ρn { ρn+1

Insight: deadlock and leak freedom are related

17

Deadlock and leak freedom proof sketch

Goal: Find a thread in ρn ≠ ∅ that can progress
Fact 1: ρ1 type-checks =⇒ every X ∈ ρn can either progress, or waits for some Y

Therefore: Start at any X ∈ ρn, and keep following waits for edges
▶ What if we loop in a cycle? deadlock/leak

Fact 2: ρ1 type checks =⇒ run-time graph ρn of threads & locks remains acyclic

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

{

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

Problem: Proving Fact 1 & 2 formally (in Coq) is hard and tedious

17

Deadlock and leak freedom proof sketch

Goal: Find a thread in ρn ≠ ∅ that can progress
Fact 1: ρ1 type-checks =⇒ every X ∈ ρn can either progress, or waits for some Y

Therefore: Start at any X ∈ ρn, and keep following waits for edges

▶ What if we loop in a cycle? deadlock/leak

Fact 2: ρ1 type checks =⇒ run-time graph ρn of threads & locks remains acyclic

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

{

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

Problem: Proving Fact 1 & 2 formally (in Coq) is hard and tedious

17

Deadlock and leak freedom proof sketch

Goal: Find a thread in ρn ≠ ∅ that can progress
Fact 1: ρ1 type-checks =⇒ every X ∈ ρn can either progress, or waits for some Y

Therefore: Start at any X ∈ ρn, and keep following waits for edges
▶ What if we loop in a cycle? deadlock/leak

Fact 2: ρ1 type checks =⇒ run-time graph ρn of threads & locks remains acyclic

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

{

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

Problem: Proving Fact 1 & 2 formally (in Coq) is hard and tedious

17

Deadlock and leak freedom proof sketch

Goal: Find a thread in ρn ≠ ∅ that can progress
Fact 1: ρ1 type-checks =⇒ every X ∈ ρn can either progress, or waits for some Y

Therefore: Start at any X ∈ ρn, and keep following waits for edges
▶ What if we loop in a cycle? deadlock/leak

Fact 2: ρ1 type checks =⇒ run-time graph ρn of threads & locks remains acyclic

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

{

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

Problem: Proving Fact 1 & 2 formally (in Coq) is hard and tedious

17

Deadlock and leak freedom proof sketch

Goal: Find a thread in ρn ≠ ∅ that can progress
Fact 1: ρ1 type-checks =⇒ every X ∈ ρn can either progress, or waits for some Y

Therefore: Start at any X ∈ ρn, and keep following waits for edges
▶ What if we loop in a cycle? deadlock/leak

Fact 2: ρ1 type checks =⇒ run-time graph ρn of threads & locks remains acyclic

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

{

T1 ℓ1 T2

ℓ2T3ℓ3 ℓ4

T4 T5 ℓ5

T6

ℓ6

T7ℓ7

ℓ8

T8 T9 ℓ9 T10

ℓ10T11ℓ11 ℓ12

T12

Problem: Proving Fact 1 & 2 formally (in Coq) is hard and tedious

18

Separation logic for acyclicity

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic

Jules Jacobs, Stephanie Balzer, Robbert Krebbers, in POPL’22

19

Motto: Do proofs in separation logic, get acyclicity for free
Key insight: Separation logic proof rules correspond to

acyclicity-preserving graph transformations!

1. Instantiate Iris proof mode with a linear separation logic
2. Do all type preservation inside that separation logic:

Coq → Iris
Prop → iProp

P ∧ Q → P ∗ Q
intros → iIntros

destruct → iDestruct

split → iSplit

3. Get acyclicity for free!∗

19

Motto: Do proofs in separation logic, get acyclicity for free
Key insight: Separation logic proof rules correspond to

acyclicity-preserving graph transformations!

1. Instantiate Iris proof mode with a linear separation logic
2. Do all type preservation inside that separation logic:

Coq → Iris
Prop → iProp

P ∧ Q → P ∗ Q
intros → iIntros

destruct → iDestruct

split → iSplit

3. Get acyclicity for free!∗

20

Beyond acyclicity: λlock++

21

Beyond acyclicity
Unifying two worlds of session types

Multiparty GV: Functional Multiparty Session Types With Certified Deadlock Freedom
Jules Jacobs, Stephanie Balzer, Robbert Krebbers, in ICFP’22

22

GV family languages
Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types

▶ Deadlock-freedom by duality &
linear typing

▶ Dynamic spawning
▶ Channels first class values
▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types

▶ Deadlock-freedom by global
consistency check

▶ One static session
▶ Channels second class
▶ Pi-calculus variants

GV

×

MPST

=

MPGV

22

GV family languages
Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types
▶ Deadlock-freedom by duality &

linear typing

▶ Dynamic spawning
▶ Channels first class values
▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types
▶ Deadlock-freedom by global

consistency check

▶ One static session
▶ Channels second class
▶ Pi-calculus variants

GV

×

MPST

=

MPGV

22

GV family languages
Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types
▶ Deadlock-freedom by duality &

linear typing
▶ Dynamic spawning

▶ Channels first class values
▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types
▶ Deadlock-freedom by global

consistency check
▶ One static session

▶ Channels second class
▶ Pi-calculus variants

GV

×

MPST

=

MPGV

22

GV family languages
Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types
▶ Deadlock-freedom by duality &

linear typing
▶ Dynamic spawning
▶ Channels first class values

▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types
▶ Deadlock-freedom by global

consistency check
▶ One static session
▶ Channels second class

▶ Pi-calculus variants

GV

×

MPST

=

MPGV

22

GV family languages
Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types
▶ Deadlock-freedom by duality &

linear typing
▶ Dynamic spawning
▶ Channels first class values
▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types
▶ Deadlock-freedom by global

consistency check
▶ One static session
▶ Channels second class
▶ Pi-calculus variants

GV

×

MPST

=

MPGV

22

GV family languages
Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types
▶ Deadlock-freedom by duality &

linear typing
▶ Dynamic spawning
▶ Channels first class values
▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types
▶ Deadlock-freedom by global

consistency check
▶ One static session
▶ Channels second class
▶ Pi-calculus variants

GV

×

MPST

=

MPGV

23

MPGV allows local cycles

Can we allow that in λlock?

24

From λlock to λlock++

In λlock, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (ℓ1, ℓ2) = fork((ℓ1, ℓ2), λ(ℓ1, ℓ2). · · ·) in · · ·

No, because
▶ Deadlock: acquiring (ℓ1 then ℓ2) in parallel with (ℓ2 then ℓ1)
▶ Leak: storing (ℓ1 into ℓ2) in parallel with (ℓ2 into ℓ1)

Yes, if
▶ We make acquire and wait follow a lock order

(only for locks in the same lock group)
▶ We prevent storing locks inside each other

(only for locks in the same lock group)

24

From λlock to λlock++

In λlock, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (ℓ1, ℓ2) = fork((ℓ1, ℓ2), λ(ℓ1, ℓ2). · · ·) in · · ·

No, because
▶ Deadlock: acquiring (ℓ1 then ℓ2) in parallel with (ℓ2 then ℓ1)
▶ Leak: storing (ℓ1 into ℓ2) in parallel with (ℓ2 into ℓ1)

Yes, if
▶ We make acquire and wait follow a lock order

(only for locks in the same lock group)
▶ We prevent storing locks inside each other

(only for locks in the same lock group)

24

From λlock to λlock++

In λlock, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (ℓ1, ℓ2) = fork((ℓ1, ℓ2), λ(ℓ1, ℓ2). · · ·) in · · ·

No, because
▶ Deadlock: acquiring (ℓ1 then ℓ2) in parallel with (ℓ2 then ℓ1)
▶ Leak: storing (ℓ1 into ℓ2) in parallel with (ℓ2 into ℓ1)

Yes, if
▶ We make acquire and wait follow a lock order

(only for locks in the same lock group)
▶ We prevent storing locks inside each other

(only for locks in the same lock group)

25

λlock++’s lock group type

⟨τ1
a1
b1
, ..., τn

an
bn
⟩

▶ We can only acquire and wait in the given order
▶ We can add and remove locks dynamically
▶ The type level list is a local view into a complete order.

26

λlock++’s lock group API

newgroup : 1 −◦ ⟨⟩
dropgroup : ⟨⟩ −◦ 1

new[k] : ⟨A,B⟩ −◦ ⟨A, τ1
1, B⟩ (where length(A) = k)

drop[k] : ⟨A, τ0
0, B⟩ −◦ ⟨A,B⟩

release[k] : ⟨A, τa
1, B⟩ × τ −◦ ⟨A, τa

0,B⟩

acquire[k] : ⟨A, τa
0, B0⟩ −◦ ⟨A, τa

1,B0⟩ × τ

wait[k] : ⟨A0, τ
1
0,B1

0⟩ −◦ ⟨A0,B1
0⟩ × τ

fork : ⟨A⟩ × (⟨B⟩ −◦ 1) −◦ ⟨C⟩ (where A = B ⊕ C)

27

Swap within a lock group

swap : ⟨int00, int00⟩ −◦ ⟨int00, int00⟩
swap(ℓ) :=

let ℓ, x = acquire[0](ℓ) in
let ℓ, y = acquire[1](ℓ) in
let ℓ = release[0](ℓ, y) in
let ℓ = release[1](ℓ, x) in ℓ

▶ Type system enforces an order within a group
▶ No restrictions between two groups

(Partial lock orders don’t allow this!)

28

Dĳkstra’s dining philosophers

Lock groups allow λlock++ to have cyclic connectivity

▶ Example: Dĳkstra’s Dining Philosophers
▶ Every thread (Philosopher) has access to 2 locks (forks): ⟨forka

b, forka ′

b ′⟩
▶ Can grow the dining table dynamically
▶ Only need types of size 3 for table of size n:

⟨forka
b, forka ′

b ′⟩ → ⟨forka
b, forka ′

b ′ , forka ′′

b ′′⟩ → ⟨forka
b, forka ′′

b ′′⟩

P f P

fPf
→

P f P

f

PfP

f →

P f P

f

PfP

f P

29

Conclusion

30

Rust has a practical type system for memory-safety without GC ✓

Can a practical type system be deadlock and leak free?

I hope to have convinced you that:

▶ This might be possible & is worth trying
▶ Promising direction: single ownership → sharing topology

Problems yet to be solved:

▶ Type system → program logic (“Deadlock Free Iris”)
▶ Integration with Rust features (borrowing & unsafe)
▶ DAG-shaped mutable data structures / Rc<RefCell<T>>

30

Rust has a practical type system for memory-safety without GC ✓

Can a practical type system be deadlock and leak free?

I hope to have convinced you that:

▶ This might be possible & is worth trying
▶ Promising direction: single ownership → sharing topology

Problems yet to be solved:

▶ Type system → program logic (“Deadlock Free Iris”)
▶ Integration with Rust features (borrowing & unsafe)
▶ DAG-shaped mutable data structures / Rc<RefCell<T>>

30

Rust has a practical type system for memory-safety without GC ✓

Can a practical type system be deadlock and leak free?

I hope to have convinced you that:

▶ This might be possible & is worth trying
▶ Promising direction: single ownership → sharing topology

Problems yet to be solved:

▶ Type system → program logic (“Deadlock Free Iris”)
▶ Integration with Rust features (borrowing & unsafe)
▶ DAG-shaped mutable data structures / Rc<RefCell<T>>

30

Rust has a practical type system for memory-safety without GC ✓

Can a practical type system be deadlock and leak free?

I hope to have convinced you that:

▶ This might be possible & is worth trying
▶ Promising direction: single ownership → sharing topology

Problems yet to be solved:

▶ Type system → program logic (“Deadlock Free Iris”)
▶ Integration with Rust features (borrowing & unsafe)
▶ DAG-shaped mutable data structures / Rc<RefCell<T>>

31

“The authors didn’t even have to hide a bunch
of more complicated rules in an appendix.” – Reviewer A

Related work
▶ CLASS – Rocha and Caires (ICFP’21, ESOP’23)
▶ Client-server sessions – Qian, Kavvos, Birkedal (ICFP’21)
▶ Usages/obligations – Kobayashi et al. (see paper)
▶ Priorities – Padovani, Dharda et al. (see paper)
▶ Manifest sharing – Balzer et al. (ICFP’17,ESOP’19)
▶ Session types – (see paper)

